Synthesis and structures of magnetic model systems with competing interactions

Angela Möller

JGU Mainz, Institute for Inorganic and Analytical Chemistry, Germany

angela.moeller@uni-mainz.de

Competing interactions may occur in magnetic materials with geometric frustration and thereby giving rise to nontrivial ground states. The triangular or kagome lattices are examples for such intriguing scenarios. From a chemist's point of view, a welcomed challenge is the development of classes of materials where the magnetic interactions (ferro- or antiferromagnetic) can be tuned by spin, charge, and size degrees of freedom. Moreover, by controlling the structural distortions examples for easy-axis, easy-plane Heisenberg, or collinear antiferromagnets on the triangular lattice can be obtained.^{1,2} Here, we will discuss the structure-property relationships investigated by neutron diffraction, magnetic and spectroscopic studies for a series of model compounds.

References:

1) N.E. Amuneke, J. Tapp, C. deLaCruz, A. Möller, Experimental Realization of a Unique Class of Compounds: XY-Antiferromagnetic Triangular Lattices, KAg₂Fe[VO₄]₂ and RbAg₂Fe[VO₄]₂, with Ferroelectric Ground States, *Chem. Mater.* **26**, 5930 (2014).

2) M. Bratsch, A.P. Litvinchuk, J. Tapp, A. Möller; Synthesis, Thermodynamic and Spectroscopic Properties of Honeycomb-Type Lattices: AAg₂(M'_{1/3}M_{2/3})[VO₄]₂; Inorg. Chem. **53**, 4994 (2014).