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Chapter 0

Introduction

Scattering experiments have been essential in our current understanding of the
constituents of matter, since the inelastic scattering of projectiles at a target can
give access to otherwise hidden substructures. As the resolution of a scattering
experiment is anti-proportional to the momentum p of the projectile, higher and
higher collision energies provided access to a finer and finer picture of matter as we
see it today.
With state-of-the art accelerators, particles can be brought to collision at very high
energies. Experiments inspecting the collisions are powerful microscopes to look
deeply into the substructure of matter. Particles produced in these collisions are
created as ensembles of elementary building blocks, the so-called quarks and gluons.
In ordinary matter these constituents are always bound in so-called hadrons. Yet, it
is assumed, that at the beginning of the universe, shortly after the big bang, there
was a phase where the quarks and gluons were able to move freely in a so-called
Quark-Gluon Plasma. At high energy densities realized in heavy-ion collisions at
the Large Hadron Collider at CERN, this state of matter can be reproduced in the
laboratory and investigated with experiments like ALICE. Measurements of proton-
proton collisions serve as a reference, where no such plasma is created.
The particle production mechanisms in these collisions can be studied by means of
observables like the number of produced particles and their transverse-momentum
spectra. In this work, the correlation between the mean values of the transverse-
momentum spectra and the number of charged particles is studied for proton-proton
collisions at a centre-of-mass energy of

√
s = 5.02 TeV. In the first chapter an

introduction to the properties of the strong interaction and the particle production
mechanisms in high-energy collisions is given. The second chapter discusses the
experimental setup of ALICE. In the third chapter the analysis steps and results
are presented. The work is concluded by a summary and outlook.
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Chapter 1

Theoretical Background

In the first section of this chapter a short introduction to the properties of the
strong force is given. The second section shortly discusses particle production in
high energy collisions and the observables studied in this work.

1.1 The strong interaction

The strong interaction is the strongest of the four fundamental forces (among grav-
ity, weak interaction and electromagnetism). Its theoretical description is provided
by Quantum Chromodynamics (QCD), which is an integral part of the current
standard model of particle physics. Besides protons and neutrons, many different
particle species are found in high energy particle collisions. These particles consist
of so-called partons, more precisely quarks and gluons (the mediators of the strong
force). QCD describes the strong interactions between these partons. There are six
different quark ‘flavours’, called up, down, strange, charm, top and bottom. The
quarks as well as the gluons carry so-called colour charge as a quantum mechanical
degree of freedom. These colours are denoted by red, green, blue and the respec-
tive anti-colours. No free quarks or gluons were observed yet. In ordinary matter,
they are confined in so-called hadrons to form colour neutral objects. The so-called
valence quarks define the quantum numbers of the hadron. There are two different
types of hadrons: Baryons, which consist of three valence quarks and mesons, which
consist of a quark and an anti-quark. The masses of these valence quarks do not add
up to the total mass of the hadron. Its actual mass is mainly caused by a cloud of
gluons and dynamically produced quark-anti-quark pairs, the so-called sea-quarks.
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Figure 1.1: Coupling constant αS of the strong interaction as a function of momen-
tum transfer Q as measured by different experiments [KST+15].

The coupling strength of Quantum Chromodynamics has a strong dependence on
the momentum transfer Q in the respective interaction:

αS =
12π

(33− 2nf ) · ln(Q2/Λ2
QCD)

(1.1.1)

Here ΛQCD is the only free parameter in QCD and nf number of quark flavours
which can contribute at the given energy scale. This so-called running coupling
constant αS is shown as a function of Q in figure 1.1. For large momentum transfer
respectively small distances, the interaction between the quarks is weak. This is
called asymptotic freedom. Therefore, in heavy-ion collisions where the energy
density is large, it is believed that the quarks can move quasi free. This state
of matter is called a Quark Gluon Plasma (QGP). Its properties can be accessed
indirectly through a variety of signatures, which are discussed in detail in [SSS10].
For more details on the strong interaction see [Gri87].

1.2 Particle production in proton-proton collisions

In particle accelerators like the Large Hadron Collider at CERN, protons can be
brought to collision at very high centre-of-mass energies. If these protons scatter
inelastically, new particles are produced, which can be measured by detectors sur-
rounding the interaction point. Before the collision, the total momentum in the
plane transverse to the beam axis is zero. Therefore, this momentum component of
the particles produced in the collision is a direct consequence of the interactions in
the scattering process.
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Figure 1.2: Quark-antiquark potential [Sjö09].

The hardness of a collision is characterized by the momentum transfer Q between
the colliding protons. In soft collisions, with little momentum transfer, only few
particles are produced, whereas in hard scattering events many particles with high
transverse momenta emerge from the collision. For these hard collisions with a
large momentum transfer Q, the coupling constant of the strong interaction αs

becomes small (as shown in figure 1.1). Therefore, in this regime the elementary
cross sections of the scattering partons can be approximated using pertubative QCD
(pQCD). Together with the so-called parton distribution functions, which describe
the density distribution of the different partons in the proton, and a fragmentation
function, this elementary cross section can be used to calculate the differential cross
section of the overall particle production in a hard proton-proton collision. This
approach is called factorization (for more details see [Lü10]).
In the description of the overall particle production observed in proton-proton colli-
sions, these hard collisions are important for the high transverse momentum part of
the spectrum. The particle production at low transverse momenta is dominated by
soft processes. For soft collisions it is not possible to use the factorization described
before, since the coupling constant is large and therefore the elementary cross sec-
tions can not be approximated using pQCD. Therefore, these soft processes can
only be described by means of phenomenological models.

An example for such a phenomenological model is the so-called Lund string model
[AGIS83], which is implemented in the PYTHIA event generator used in this work.
The purpose of this model is to describe the process of hadronization by means
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Figure 1.3: Illustration of fragmentation in the Lund string model [Sjö09].

of a fragmenting quark-antiquark pair. The potential between the quark and the
anitquark is given by:

V (r) = −3

4

αS(r)~c
r

+ k · r (1.2.1)

It contains a Coulomb-like and a linear term. The shape of this potential is illus-
trated in figure 1.2. Due to the linear term in the potential, the energy contained
in the field between the quark and the antiquark rises proportional to the string
tension k with their distance. If this energy is large enough, a new quark-antiquark
pair is created out of vacuum and the string breaks: q − q̄ → q − q̄′ + q′ − q̄. This
newly produced quark-antiquark pair can then continue to fragment further. This
is illustrated in figure 1.3. The blue and the green lines indicate quarks, respec-
tively antiquarks. The initial quark-antiquark pair moves apart in z direction. After
some time t, the string, indicated by the red lines, breaks and a new quark-antiquark
pair is created. This process repeats until the energy in the string is no longer large
enough create more quark-antiquark pairs. Analogously, diquark-antidiquark pairs
can be created when the string breaks[GO09]: q− q̄ → q− q′q′ + q̄′q̄′ − q̄. This will
eventually lead to the production of baryons. The number of final state hadrons,
which can be produced via this fragmentation process depends on the energy in the
initial quark-antiquark pair.

An important observable to confirm if the soft processes are modelled accurately
in the event generator, is the relation between the number of particles produced
in the collision and their respective transverse momentum spectrum. To visualize
this relation, the transverse momentum spectrum is usually represented by its mean
〈pT〉. In this work, 〈pT〉 is studied for proton-proton collisions at a

√
s = 5.02 TeV.
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Chapter 2

ALICE experiment

The experimental setup used in this work is located on the premises of the Euro-
pean Organization for Nuclear Research (CERN). ALICE (A Large Ion Collider
Experiment) is one of the four major experiments at the world’s largest ion storage
ring, the so called Large Hadron Collider (LHC). Together with its preaccelerators
the LHC can be found in the frontier area of France and Switzerland. It is located
approximately 100 m underground and has a circumference of about 27 km. Inside
the two LHC beam pipes, protons as well as lead ions, which are fully stripped of
their electrons, can be accelerated up to nearly the speed of light. The counter-
rotating beams are brought to collision at four designated crossing points, around
one of which the ALICE experiment is built. ALICE is dedicated to investigate
the properties of the Quark Gluon Plasma, an endeavour on which currently about
2800 [LHC] researchers from all over the world are collaborating.

To obtain as broad a picture as possible of the particle collisions occurring at the
beam-crossing point, many different detector technologies are employed in ALICE.
Its main feature is the ability to measure the three dimensional momenta of electri-
cally charged particles even at high particle densities as they are found in lead-lead
collisions. Additionally, some of the detectors provide means for identifying the
different particle species. Their respective particle identification (PID) capability
is advantageous for specific momentum ranges and particle species. In this regard,
the various detector technologies complement one another. ALICE is also capable
to measure the energies of neutral particles by means of calorimeters.
Figure 2.1 illustrates how the different detectors are arranged in the experiment.
The main detector systems reside in a normally conductive 0.5 T solenoid, the so-
called L3 magnet (named after the predecessor experiment), and are assembled in
layers cylindrically around the interaction point. Because of their importance for
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CHAPTER 2. ALICE EXPERIMENT

Figure 2.1: Illustration of the ALICE experiment [Ali14].

this work, the two innermost detectors of this onion-like arrangement, the Inner
Tracking System (ITS) and the Time Projection Chamber (TPC) are discussed in
more detail subsequently. The TPC is followed by the Transition Radiation De-
tector (TRD), which is used for particle identification, especially for distinguishing
between electrons and pions. The TRD is surrounded by the Time of Flight De-
tector (TOF), which in combination with the T0 detector can be used to measure
the time it takes for a particle to traverse the experiment. Together with the TPC
momentum measurement, the particle velocity inferred from this time of flight can
be used to identify the particle species. The TOF is followed by several detec-
tor systems, which in contrast to the afore mentioned detectors do not cover the
full φ = 2π acceptance around the beam line. One of them is the High Momen-
tum Particle Identification Detector (HMPID) based on a Ring Imaging Cherenkov
Detector (RICH), which is capable of identifying charged particles with high mo-
menta. Three electromagnetic calorimeters are placed at the top (Electromagnetic
Calorimeter (EMCal)) respectively at the bottom (Photon Spectrometer (PHOS)
and Dijet Calorimeter (DCal)) of the experiment. They provide the means to
measure the energy and position of particles, which primarily interact via the elec-
tromagnetic force (e.g. photons) by stopping them and absorbing their energy.
The Forward Multiplicity Detector (FMD) and the Photon Multiplicity Detector
(PMD) are used to estimate the number of charged particles respectively photons
in forward direction. The V0 detector is used for triggering and centrality de-
termination in lead-lead collisions. Further along the beam line, the Zero Degree
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CHAPTER 2. ALICE EXPERIMENT 2.1. INNER TRACKING SYSTEM

Figure 2.2: The Inner Tracking System, consisting of the three subsystems SPD
(innermost), SDD and SSD (outermost) [Col14].

Calorimeters (ZDCs) can be found. They are used to estimate the centrality of
lead-lead collisions by measuring remnants of the colliding nuclei. For the measure-
ment of muons, a single-arm detector is installed in forward direction. In order to
prevent all particles but the hardly interacting muons from reaching the detector,
it is placed behind absorbers. The ALICE Cosmic Ray Detector (ACORDE) is
located on top of the L3 magnet. It is used to trigger on cosmic particles, which
can be used to calibrate the detectors.

2.1 Inner Tracking System

The Inner Tracking System (ITS) is the innermost detector in ALICE. It is assem-
bled cylindrically around the beam pipe and consists of three subdetector systems,
each consisting of two layers of silicon-based semiconductor detectors. These subde-
tector systems are the Silicon Pixel Detector (SPD), which is located close around
the beam pipe, the Silicon Drift Detector (SDD) and the Silicon Strip Detector
(SSD). Due to its proximity to the beam-crossing point, the ITS plays an impor-
tant role in determining the position of the particle collision, the so-called primary
vertex. Together with the Time Projection Chamber, it provides the space points
for reconstructing tracks of the charged particles produced in the collision. These
tracks are then used to obtain the transverse momenta of the corresponding parti-
cles (see next section). An illustration of the ITS is shown in figure 2.2. To provide
a good spacial resolution of the tracks even for the high track densities close to the
primary vertex, the SPD has a very high pixel granularity. In addition, the SDD
and SSD are able to measure the energy loss of the traversing particles, which can
be used for particle identification. A detailed technical description of the ITS can
be found in [Col14].
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Figure 2.3: Illustration of the ALICE Time Projection Chamber [AA+10].

2.2 Time Projection Chamber

The Time Projection Chamber (TPC) consists of a large cylindrical barrel, which
is installed around the ITS. It extends from a radial distance of r1 = 0.85 m up to
r2 = 2.47 m and is 5 m long[A+08]. As shown in figure 2.3, a central electrode divides
the 88 m3 volume filled with a gas mixture of Ar and CO2 into two separate regions.
A high voltage is applied between this central electrode and the two endplates
of the barrel, resulting in an electric field of E = 400 V/cm. The electric field
is aligned parallel to the magnetic B = 0.5 T field of the L3 magnet. Charged
particles produced in the collisions are bend in the magnetic field and ionize the
gas contained in the TPC on their way through the detector. Due to the electric
field, the liberated electrons are accelerated towards the endplates. Interactions
with the gas molecules result in a constant drift velocity. At the endplates the
electrons are measured using Multi-Wire Proportional Chambers (MWPCs) with
a cathode pad readout. The spacial points obtained from this measurement give a
two dimensional projection of the particle track. The third dimension is inferred
from the drift time of the electrons. The curvature ρ of the tracks can be used to
determine the magnetic rigidity:

pT

q
= Bρ (2.2.1)

where pT is the momentum component in the plane transverse to the beam axis. The
majority of particles are charged with q = ±e. Therefore, the transverse momentum
can be calculated by pT = Bρe. Using the polar angle θ of the track, the total
momentum |p| can be inferred from the definition of the transverse momentum
pT = sin(θ) · |p|. In addition to the momentum measurement, the TPC can be used

12
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Figure 2.4: Detector acceptance of the TPC and the SPD, SDD and SSD subde-
tectors of the ITS depending on the position of the primary vertex in z
direction [Kni14].

for identifying the particle species by means of their specific energy loss in the gas.
A detailed technical description of the TPC can be found in [AA+10].

2.3 Data acquisition

For each beam crossing inside of ALICE, there is a certain probability for two
particles to interact with each other, i.e. for a so-called event. In order to distinguish
these events from other beam induced signals in the experiment, a set of detectors
is required to respond in coincidence with the beam crossing. Only events fulfilling
this so-called minimum-bias trigger condition are being recorded for further analysis.
The basic unit of recorded data in ALICE is called a run. It corresponds to a time
interval of continuous data taking (usually not more than a few hours) without
changes in the detector configuration. Runs can be identified by a unique run
number and are aggregated to so-called data taking periods. Those are usually
defined by a certain physics setup of the LHC beam (e.g. collision system and
centre-of-mass energy) and setting of the experiment (e.g. direction and magnitude
of magnetic field).

2.4 Primary vertex

The primary vertex of an event is defined as the point of origin of all the primary
particles produced in the collision. It is determined by the mean origin of the
charged-particle tracks, which are constrained by space points from both the TPC

13



2.4. PRIMARY VERTEX CHAPTER 2. ALICE EXPERIMENT

Figure 2.5: Illustration of the DCA in the plane transverse to the beam axis (left)
and along the beam line (right) [Kni14].

and the ITS (so-called global tracks). Therefore, the accuracy of the vertex posi-
tion depends on the number of tracks measured in the collision. The position of the
primary vertex affects the spacial acceptance covered by the detectors and thereby
changes the kinematic range of the particles recorded in the measurement. Figure
2.4 shows the detector acceptance in pseudorapidity (see appendix A) as a function
of the position of the primary vertex along the beam direction (z) with respect to
the nominal interaction point. The grey line indicates that for the TPC there is
hardly any change of the detector acceptance for vertices within |Vz| < 30 cm. In
contrast, the η window covered by the different subdetectors of the Inner Track-
ing System significantly shifts with the position of the interaction point. This is
mainly caused by the limited longitudinal dimension of the ITS. The two layers of
the SPD for example only have a length of |lz| = 14.1 cm [A+08]. Therefore, the
detectable emission angle with respect to the beam line is severely restricted for
collisions located far from the middle of the detector. To ensure the pseudorapidity
window of |η| < 0.8, which is used in this work, the vertex position must not be
larger than Vz ± 10 cm. The geometrical acceptance is also affected by the radial
distance of the ITS subdetector to the collision vertex. This is shown in figure 2.4
for the outer (orange line) and inner (red line) SPD layers, which have the same
longitudinal dimension, but are located at different radii.

The tracks of secondary particles usually do not point to the primary vertex. In
ALICE, the closest distance of a track to the primary vertex position is called dis-
tance of closest approach (DCA). Figure 2.5 illustrates the geometrical meaning of
the DCA. The left panel of the figure shows a profile of the two inner layers of the
ITS in the plane transverse to the beam. Here, the distance between the interaction
point and the track is called DCAxy. The right panel of the figure shows a projec-
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Figure 2.6: The left panel shows the relative abundances of the different particle
species produced in pp collisions as a function of pT for data and MC.
In the right panel the ratio of the tracking efficiencies obtained with
and without particle composition correction are shown [Huh17].

tion along the beam line, where the distance of closest approach is called DCAz.
In this work, restrictions on the DCA are used to suppress secondary particles in
the measurement. These restrictions do not reject all secondary particles, leading
to a remaining secondary contamination, which needs to be corrected for.

2.5 Monte Carlo simulation

Due to the limited acceptance and efficiency of the experiment, the raw data mea-
sured with ALICE needs to be corrected in order to obtain a physically meaningful
image of the collision. To determine these corrections, a detailed knowledge of
the geometries, materials and performance of the detector is indispensable. For
that purpose, ALICE is modelled using the GEometry And Tracking (GEANT3
[BB+94]) software framework, which offers the possibility to simulate the detector
response including all the interactions of a particle traversing the experiment. The
virtual events used for this simulation are created by Monte Carlo (MC) event gen-
erators (in this analysis PYTHIA8 [SAC+15]), which emulate the pp collisions based
on pertubative QCD in the hard scattering regime and phenomenological models in
the soft scattering regime. The artificial measurement obtained from these simula-
tions is then propagated through the same chain of reconstruction algorithms and
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quality requirements as the real data.

Calculating corrections for the measured data based on MC simulations not only
requires a proper understanding of the detector, but also depends on how accurate
the simulated events describe the true physical interactions occurring in the colli-
sion. A known issue of the available event generators is their inability to properly
reproduce the measured composition of particle species (pions, protons, kaons, sig-
mas, etc.). In the left panel of figure 2.6 the relative abundances of the different
identified charged particles are shown as a function of pT. The relative abundances
of the measured data (filled markers) clearly differ from the ones in the Monte Carlo
simulation (empty markers). Since the tracking capability of the TPC and the effect
of the track quality constraints strongly depend on the specific particle properties
(mass, lifetime, etc.), a bias in the particle composition also affects the overall effi-
ciency. In order to take this into account, the tracking efficiency obtained from the
simulation is re-weighted using the relative abundances derived from measurements
of identified particles with ALICE. The resulting efficiency has a strong pT depen-
dence and can differ from the uncorrected one by up to six percent as shown in the
right panel of figure 2.6. A detailed description of this data-driven procedure can
be found in [Huh17].
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Chapter 3

Analysis

The ALICE experiment is very well suited to study the charged-particle production
in high-energy collisions. Its Time Projection Chamber and Inner Tracking System
allow for a high precision measurement of the charged-particle transverse momen-
tum spectra, which can be characterized by their mean and higher moments. This
work aims to study the correlation between these moments and the corresponding
number of particles in the collision. The true correlation between these two quanti-
ties is lost in the measurement and needs to be reconstructed by means of a Monte
Carlo simulation.
In the first section of this chapter, the dataset and data quality constraints used in
this work are described. Necessary corrections applied to the measured transverse
momentum spectra are discussed in section two. Afterwards, two different ap-
proaches for reconstructing the correlation between the transverse momentum and
the true number of particles in an event are presented in sections three (re-weighting
of moments) and four (unfolding of spectra). Finally, the systematic uncertainties
of the resulting moments are discussed and the two methods are compared in the
last section of this chapter.

3.1 Dataset

This work is based on measurements of proton-proton collisions at a centre-of-
mass energy of

√
s = 5.02 TeV from data recorded in the year 2015. A detailed

list of the selected runs can be found in appendix B. The transverse momentum
(pT) spectra of primary charged particles are investigated in a kinematic range of
0.15 GeV/c ≤ pT < 10 GeV/c and pseudorapidity |η| < 0.8. To guarantee this η
coverage for both, the ITS and TPC, the primary vertex position is restricted to
|Vz| < 10 cm along the beam line. Each event must fulfil the minimum-bias trigger,
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3.2. PT SPECTRA CHAPTER 3. ANALYSIS

which requires hits in the two layers of the SPD and both of the forward scintillators
V0A and V0C. In this work, the current ‘standard’ track quality constraints for
charged-particle analyses in ALICE are used. They are described in detail in [Ali17]
and will be mentioned here only for completeness. Each track is required to have:

• at least 2 hits in the ITS with at least one of them in either of the two
innermost layers of the SPD.

• a distance of closest approach to the primary vertex of DCAz < 2 cm and
DCAxy < 7σ (where σ = 26 + 50

(pT / GeV/c)1.01 is the standard deviation of the
impact parameter resolution).

• a maximum deviation of the ITS and TPC tracking points from the global
track fit of χ2

ITS/cluster < 36 and χ2
TPC/cluster < 4.

• a maximum deviation between the global track and a track constrained by
the TPC space points and the vertex of χ2

TPC−ITS < 36.

• a minimum length of in the TPC (in cm) of L = 130 − p−1.5T (with pT in
GeV/c), not including the pads lying within a dead zone of 3 cm away from
the sector edges.

• a length measured in the TPC readout pad rows crossed by the track of more
than 0.85 · L.

• a length measured in the TPC clusters (one cluster per pad row), which is
larger than 0.7 · L.

• a ratio of crossed TPC pad rows to the number of findable TPC clusters,
which is larger than 0.8.

• a fraction of TPC clusters shared with another track, which is less than 0.4.

3.2 pT spectra

The baseline for further analysis in this work is the raw transverse momentum
spectrum composed of the measured yield of global tracks fulfilling the quality con-
ditions described in the previous section. This raw pT distribution represents only
a small sample of all the primary charged particles produced in the collisions, and
it is biased by the limits of detector efficiency and acceptance as well as the residual
contamination with secondary particles. Therefore, this measurement needs to be
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Figure 3.1: Invariant yield of primary charged particles measured in pp collisions
at
√
s = 5.02 TeV in a pseudorapidity window of |η| < 0.8 with ALICE

[Ali17].

corrected and properly normalized in order to obtain a physically meaningful ob-
servable which is independent of the detector setup. These corrections are done by
means of a Monte Carlo simulation, which provides full knowledge of the particles
produced in the virtual event as well as the ones reconstructed by the virtual de-
tector. Such, a pT-dependent detector efficiency can be calculated. This is done by
dividing the number of reconstructed by the number of generated primary charged
particles within the kinematic range of the measurement. By this definition the
tracking efficiency implicitly also takes into account the geometrical acceptance of
the experiment. Besides the tracking efficiency, the simulation also provides infor-
mation about the magnitude of secondary contamination. The fraction of primaries
in the reconstructed track sample obtained from the simulation serves as a correc-
tion factor for the measured particle yield. To correct for the inaccurate composition
of particle species produced by the event generator, a data-driven particle compo-
sition correction is applied (for details see [Huh17]).

After applying these corrections to the raw yield, the actual yield of primary charged
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particles produced in the given kinematic range is obtained. Differentiated in η and
pT as well as normalized, one obtains the Lorentz invariant yield:

d3E

dp3
=

1

2π

1

pT

d2N

dpTdη
(3.2.1)

The resulting pT spectrum for the dataset used in this work is shown in figure 3.1.

After introducing the quality cuts and corrections of the analysis, in the follow-
ing chapters the multiplicity dependence of the spectra will be discussed. In the
following the term ‘measured spectra’ refers to the measured and corrected pT spec-
tra. For the Monte Carlo results the term ‘reconstructed spectra’ will be used.

3.3 〈pT〉 vs. Nch - re-weighting method

The number of charged particles (henceforth called charged particle multiplicity)
produced in the collision increases with the momentum transfer between the two
colliding particles. Therefore, the charged-particle multiplicity is a good reference
quantity to investigate, how the pT spectra change with the hardness of the collision.
In order to visualize this relation, the shape of the spectra can be characterised by
their moments, in particular their mean 〈pT〉 and root mean square (RMS)

√
〈p2T〉.

For a given pT distribution the n-th moment is defined by

〈pnT〉 =

∫ pmaxT
pminT

pnT
dN
dpT

dpT∫ pmaxT
pminT

dN
dpT

dpT

(3.3.1)
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Figure 3.3: The left panel shows the first three moments of the measured pT spectra
as a function of Nacc with statistical uncertainties. In the right panel
the mean and RMS are shown.

using the pT differential particle yield dN/dpT. In this work the integration bound-
aries pmin

T = 0.15 GeV/c and pmax
T = 10 GeV/c are used.

In this work the measured multiplicity Nacc is defined as the number of charged-
particle tracks in an event, which are reconstructed by the detector and fulfil the
quality requirements described in section 3.1. Therefore, Nacc is not equal to the
true multiplicity Nch, which in this work refers to the number of primary charged
particles in an event, which are produced in the kinematic range 0.15 GeV/c ≤ pT <

10 GeV/c and |η| < 0.8. Many different true multiplicities have a certain probability
to be measured as Nacc. Hence, a pT spectrum assigned to Nacc contains a mixture
of events with different true multiplicities Nch. Based on the pT spectra which are
assigned to the different measured multiplicities Nacc, the correlation between Nch

and their corresponding transverse momentum spectra will be reconstructed.
From the PYTHIA Monte Carlo simulation used in this work, the conditional prob-
ability of an event with multiplicity Nch to be measured with multiplicity Nacc is
given by the elements P (Nacc|Nch) of the detector response matrix, which is shown
in figure 3.2. By definition, the elements of this response matrix fulfil the following
normalization condition for each Nch:

∑
Nacc

P (Nacc|Nch) = 1 (3.3.2)
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Figure 3.4: The left panel shows the first three re-weighed moments of the mea-
sured pT spectra as a function of true multiplicity Nch with statistical
uncertainties. In the right panel the mean and RMS are shown.

These probabilities describe how likely it is for particles produced in an event with
multiplicity Nch to contribute to the pT spectrum assigned to Nacc. Therefore,
P (Nacc|Nch) can be used as weights for reconstructing 〈pnT〉 as a function of Nch

from the moments 〈pnT〉 (Nacc) obtained from the measured spectra:

〈pnT〉 (Nch) =
∑
Nacc

P (Nacc|Nch) · 〈pnT〉 (Nacc) (3.3.3)

Figure 3.3 shows the first three moments and the RMS of the measured pT spectra
as a function of Nacc. In figure 3.4 the resulting re-weighted moments 〈pnT〉 (Nch)

are shown. Statistical uncertainties are propagated from the input spectra.
The re-weighted moments show a rise with multiplicity that is less steep than the
one observed for 〈pnT〉 (Nacc). At low multiplicities all the re-weighted moments and
the RMS follow a characteristic S-shape and then develop into to a linear slope at
about Nch = 30.

3.3.1 Extrapolation of the response matrix

The reach in multiplicity of this re-weighting method is strongly limited by the
statistics of the Monte Carlo simulation. For Nch > 70 the response matrix be-
comes very sparse (see figure 3.2) and therefore its entries do not represent the true
response of the detector any more. For example, if only one event with multiplicity
Nch = 92 was created by the event generator and measured as Nacc = 50, the result-
ing P (Nacc|Nch) would imply that the detector always reconstructs it in this way.
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Figure 3.5: The original multiplicity correlation matrix (left) and the rotated and
re-binned multiplicity correlation matrix (right), which is used as the
basis for the Gaussian fits.

To overcome this statistical limitation, the response matrix can be extrapolated.

The response matrix shown in figure 3.2 represents the probabilities for a true
multiplicity Nch to be measured with multiplicity Nacc. It is obtained by normaliz-
ing the original multiplicity correlation matrix, which contains the number of events
associated with a certain (Nch, Nacc)-combination, according to equation 3.3.2. This
original multiplicity correlation matrix is shown in the left panel of figure 3.5 and
will be the basis for the extrapolation. The shape of the event distribution appears
to follow a diagonal in the Nacc − Nch plane, which is indicated by the black line.
Orthogonal to this diagonal the events seem to be distributed with a Gaussian shape.

In order to extrapolate this multiplicity correlation matrix, its entries are rotated
in the Nacc −Nch plane until the former diagonal is located at the y-axis. The new
frame of reference is now called x − y. For low Nch, the multiplicity correlation
matrix is not symmetrical around the diagonal, and for high Nch it becomes sparse
(compare figure 3.5 left). Therefore, the range between 10 < y < 74 is chosen to be
the basis for the extrapolation. It is divided into eight intervals of ∆y = 8, as shown
in the right panel of figure 3.5. Subsequently, each of these intervals is separately
fitted with a Gaussian function:

g(x) = A · e−
(x−µ)2

2σ2 (3.3.4)
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Figure 3.6: Gaussian fits to the different y intervals shown in the right panel of
figure 3.5. The lowest interval is displayed in the upper left panel and
the highest one in the bottom right panel.
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The three fit parameters are the amplitude A, the mean µ and the width σ. In
figure 3.6 the resulting fits are shown from the lowest y interval at the upper left
panel to the highest one at the bottom right panel. For the extrapolation the pa-
rameters of these Gaussian fits are parametrized as a function of y. In figure 3.7
on the left panel the amplitude A(y) of the Gaussian fits is shown together with
an exponential fit. The right panel shows the width σ(y), which is well described
by a square root function. The mean value µ(y) of all the Gaussian fits fluctuates
around zero and is fitted by a constant, which is not shown here.

These parametrizations of the Gaussian fit parameters are used to extrapolate the
multiplicity correlation matrix in the x− y plane. It is then rotated back into the
Nacc−Nch frame of reference. Figure 3.8 shows the resulting multiplicity correlation
matrix, which is smooth compared to the original one (figure 3.5 left). The starting
point of the extrapolation is indicated by the black line. It is chosen in such a way
that each row of the multiplicity correlation matrix consists either only of values
from the original matrix or of values from the extrapolation. This way, the two
do not get mixed when normalizing the different Nch rows to obtain the detector
response matrix.

Figure 3.9 shows the original (left panel) and the extrapolated (right panel) re-
sponse matrices. The transition between the original matrix and the extrapolation
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is quiet smooth and follows the trend suggested by the original response matrix.
Figure 3.10 shows the mean and RMS of the measured spectra, re-weighted with
the original response matrix on the left panel and with the extrapolated response
matrix on the right panel. Beyond Nch = 60 the extrapolation of the response ma-
trix results in a smoothing of the fluctuating points. This is due to the fact that the
weighting factors P (Nacc|Nch) used in equation 3.3.3 now have more appropriate
values. Yet, the re-weighting is still limited by the available moments 〈pnT〉 (Nacc)

from the measured spectra. These moments become more sparse and inaccurate
for Nacc > 60 due to the limited number of events with such high multiplicities.
This might explain, why the re-weighted mean and RMS do not precisely follow the
previous linear trends for Nch > 70.
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Figure 3.10: Mean and RMS of the measured pT spectra, re-weighted with the orig-
inal (left) and the extrapolated (right) response matrix.
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3.4 〈pT〉 vs. Nch - Bayesian unfolding method

In this section, an alternative approach for reconstructing the correlation between
the pT spectra and the true event multiplicity Nch is discussed. Instead of re-
weighting the moments of the measured pT spectra as described in the previous
section, the particles contributing to the pT spectrum of a measured Nacc are now
directly redistributed to their corresponding true multiplicities Nch. It is important
to note, that just like in the previous section, the term measured spectra refers to the
measured and corrected pT spectra as a function of Nacc. The basic assumption for
the following reasoning is that after applying the efficiency corrections described in
section 3.2, each of these measured pT spectra contains the true number of particles
produced in the events, which contribute to the respective measured spectrum.
In order to perform this ‘resorting’ of particles, it is first necessary to know how the
events contributing to the pT spectrum assigned to Nacc are composed of events with
true multiplicities Nch. This will be discussed in the following. Subsequently, this
knowledge about the composition of the events is used to decompose the measured
pT spectra and obtain the pT spectra as a function of the true multiplicities Nch.

3.4.1 Unfolding of events

The measured multiplicity distribution nevt(Nacc) is the result of folding the true
multiplicity distribution of the collisions nevt(Nch) with the response of the detector.
This is illustrated in figure 3.11. To unfold the measured multiplicity distribution
and again obtain nevt(Nch), it is necessary to know how nevt(Nacc) is composed
of events with the various true multiplicities Nch. The fraction of events which
are measured with multiplicity Nacc, but originally have a true multiplicity Nch,
is represented by the conditional probability P (Nch|Nacc). This is not to be con-
fused with the detector response P (Nacc|Nch). In principle, P (Nch|Nacc) could be
obtained directly from the MC simulation just like the detector response. However,
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this way it would strongly depend on how accurate the event generator describes
the multiplicity distribution of the collisions. The detector response P (Nacc|Nch) in
contrast, in first approximation only depends on the GEANT reconstruction capa-
bility. Therefore, to be as independent of the event generator as possible, in this
work P (Nch|Nacc) is obtained by inverting the conditional probabilities P (Nacc|Nch)

from the response matrix by iteratively applying Bayes’ theorem[BP63]. This pro-
cedure was developed by G.D’Agostini [D’A95] and is described in the following.

Suppose, P (Nch) and P (Nacc) are the probability distributions for the occurrence of
the true and measured multiplicities respectively and the probability for a certain
(Nch, Nacc)-pair is given by P (Nch ∩ Nacc). Then the corresponding conditional
probabilities are defined as:

P (Nacc|Nch) =
P (Nch ∩Nacc)

P (Nch)
and P (Nch|Nacc) =

P (Nch ∩Nacc)

P (Nacc)
(3.4.1)

Therefore, Bayes’ theorem can be expressed in the language of measured and true
multiplicities as:

P (Nch|Nacc) =
P (Nacc|Nch) · P (Nch)

P (Nacc)
(3.4.2)

Every event with a measured multiplicity Nacc has to originate from some physical
multiplicity Nch. If P (Nch) is known, then the total probability to measure an event
with a multiplicity Nacc can be constructed by summing over all true multiplicities
in the following way:

P (Nacc) =
∑
Nch

P (Nch ∩Nacc) =
∑
Nch

P (Nacc|Nch)P (Nch) (3.4.3)

Therefore, the elements P (Nch|Nacc) of the so-called unfolding matrix can be ex-
pressed as:

P (Nch|Nacc) =
P (Nacc|Nch) · P (Nch)∑
N
′
ch
P (Nacc|N

′
ch)P (N

′
ch)

(3.4.4)

By this definition the unfolding matrix is normalized to unity when summing over
the true multiplicities Nch for a fixed Nacc:∑

Nch

P (Nch|Nacc) = 1 (3.4.5)

This is in contrast to the response matrix P (Nacc|Nch), which is normalized to unity
when summing over the measured multiplicities Nacc for a fixed Nch (see equation
3.3.2).
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Equation 3.4.4 represents the desired relation between the response matrix and the
unfolding matrix. Unfortunately, in order to calculate P (Nch|Nacc) it is necessary
to know the actual probability distribution P (Nch) of the true charged-particle mul-
tiplicities. This probability distribution is not accessible by the experiment. There-
fore, an iterative procedure to approximate P (Nch), and consequential P (Nch|Nacc)

will be described in the following.

Starting with an arbitrary choice for P (Nch), henceforth called P̂ (Nch), some first
guess P̂ (Nch|Nacc) for the unfolding matrix can be calculated by equation 3.4.4. To-
gether with the number of events nevt(Nacc), which were measured with multiplicity
Nacc, this P̂ (Nch|Nacc) can then be used to obtain the expected number of events
n̂evt(Nch) with a true multiplicity Nch:

n̂evt(Nch) =
∑
Nacc

P̂ (Nch|Nacc) nevt(Nacc) (3.4.6)

This equation represents the process of unfolding the true multiplicity distribution
from the measured one. For each multiplicity Nacc a fraction P̂ (Nch|Nacc) of the
nevt(Nacc) measured events is assigned to a true multiplicity Nch. The resulting
unfolded multiplicity distribution n̂evt(Nch) can now be used to calculate a better
estimate for the probability distribution of the true multiplicities:

P̂ (Nch) =
n̂evt(Nch)∑
N
′
ch
n̂evt(N

′
ch)

(3.4.7)

This probability distribution is closer to the actual P (Nch) of the collisions than the
initial guess, because the measured multiplicity distribution nevt(Nacc), which is a
direct effect of P (Nch), contributes in the unfolding procedure (equation 3.4.6) and
thereby constrains P̂ (Nch). Therefore, using this P̂ (Nch) as a better initial guess in
equation 3.4.4 and starting the procedure over again will result in an even better
estimate for P̂ (Nch). This suggests to repeat this process several times. The closer
P̂ (Nch) is to P (Nch), the better it is in agreement with the result from the previous
iteration. This decreasing difference of P̂ (Nch) between two consecutive steps of the
iteration can be used as an indicator for when to stop the procedure. The speed
of convergence depends on the initial probability distribution. It is important to
note, that if the initial P̂ (Nch) is set to zero for some Nch, the unfolding procedure
is unable to recover events with this multiplicity. In this work the initial guess for
P (Nch) is inferred from the true multiplicity distribution nevt(Nch)MC generated by
the Monte Carlo simulation.
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Figure 3.12: Reconstructed, unfolded (after ten iterations) and generated multi-
plicity distributions from the MC simulation. For the reconstructed
multiplicity distribution the x-axis label ’Multiplicity’ refers to Nacc

and for the others it represents Nch. In the left panel the unfolding
procedure is started with the generated multiplicity distribution. In
the right panel a flat distribution is used.

The Monte Carlo simulation is also predestined to verify if the unfolding procedure
works as expected. Since the true multiplicity distribution nevt(Nch)MC is known,
it can be compared to the unfolded multiplicity distribution n̂evt(Nch)MC obtained
by applying the unfolding procedure to the reconstructed multiplicity distribution
nevt(Nacc)MC. This is displayed in figure 3.12. The left panel shows the recon-
structed (blue), unfolded (red) and generated (green) multiplicity distributions.
The unfolding procedure is started with the generated multiplicity distribution just
like it will be done in data. After an exemplary ten iterations, the resulting un-
folded multiplicity distribution is (still) in perfect agreement with the generated
one, as shown by the ratio in the bottom panel. In the right panel of figure 3.12,
the unfolding procedure is started with a flat probability distribution for P̂ (Nch).
The resulting unfolded multiplicity distribution after ten iterations is also close to
the generated one, but has not yet converged.

After explaining the unfolding procedure and verifying it with the MC simulation,
it is now applied to the measured data. By studying the differences of the unfolded
multiplicity distribution n̂evt(Nch) between the consecutive steps of the procedure,
ten iterations were found to be enough to assume convergence. Since the statisti-
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Figure 3.13: Measured, unfolded (after ten iterations) and MC truth multiplicity
distributions in pp collisions at

√
s = 5.02 TeV. For the measured

multiplicity distribution the x-axis label ’Multiplicity’ refers to Nacc

and for the others it represents Nch.

cal uncertainty of the measured multiplicity distribution nevt(Nacc) contributes to
n̂evt(Nch) in each iteration, it is not advisable to use too many iterations. A detailed
calculation of this propagation of uncertainties can be found in [Ady11]. From now
on it is assumed that after these ten iterations n̂evt(Nch) ≈ nevt(Nch) and conse-
quential P̂ (Nch|Nacc) ≈ P (Nch|Nacc).

Figure 3.13 shows the measured (nevt(Nacc)) and the unfolded (n̂evt(Nch) ≈ nevt(Nch))
multiplicity distributions from data, as well as the true multiplicity distribution
obtained from the MC simulation, which was used as the starting point for the
unfolding procedure. The shapes of the simulated and the unfolded multiplicity
distributions are similar, but not in perfect agreement. Noticeable is the apparent
dip at Nch ≈ 10 in the MC truth distribution, which cannot be found in the unfolded
distribution. This fact again highlights the importance of the initial reasoning to
not obtain the unfolding matrix directly from the Monte Carlo simulation, but by
means of a procedure which is relatively independent of the event generator.

The aim of the all the previous calculations was to obtain the unfolding matrix,
which is shown in figure 3.14. Its elements P (Nch|Nacc) represent the fraction of
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Figure 3.14: Unfolding matrix after ten iterations.

events measured with multiplicity Nacc, which originally have a true multiplicity
Nch. This gained understanding of the composition of the measured events will be
used as the baseline for unfolding the measured pT spectra, which is described in
the following.
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Figure 3.15: Measured pT spectra in pp collisions at
√
s = 5.02 TeV as a function

of Nacc.

3.4.2 Unfolding of spectra

Now, that the unfolding of the measured events is established, one can return to
the original issue of unfolding the measured pT spectra, which are shown in figure
3.15. The transverse momentum spectrum of events with a measured multiplicity
Nacc consists of particles originating from events with many different true multiplic-
ities Nch. The pT spectra of these contributing events have a characteristic shape
depending on their respective multiplicity. Therefore, the shape of a measured pT

spectrum depends on its composition of the contributing Nch spectra. A proper un-
folding of the measured spectrum in principle needs to be done as a function of pT.
However, since the correlation between Nch and Nacc given by the unfolding matrix
is an event quantity, which does not contain any pT dependence, this is not possible.
Nevertheless, a measured pT spectrum can still be unfolded under the assumption
that the difference in the shapes of the Nch dependent pT spectra contributing to
the measured spectrum is small.

To illustrate this, in figure 3.16 the results from an example MC simulation for
events with Nacc = 20 are shown. The upper four panels show the average charged
particle pT distributions per event for true multiplicities Nch = 26, 27, 28 and 29.
According to the unfolding matrix in figure 3.14, events with these multiplicities
contribute to about 40 % of all events which lead to the measured multiplicity
Nacc = 20.
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Figure 3.16: Toy simulation to illustrate the pT-dependent relative composition of a
measured pT spectrum. The upper 4 panels show the mean number of
particles per event as a function of pT obtained from the MC simulation
for the multiplicities Nch = 26, 27, 28, 29, respectively. The bottom
left panel shows a toy measurement for Nacc = 20 composed of these
four Nch multiplicities. The bottom right panel shows the resulting
relative composition of the toy measurement with respect to the true
multiplicities as a function of pT (red lines) and the pT-independent
composition of the integral of particles (coloured areas).
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In the example calculation 10 events with Nch = 26, 20 events with Nch = 27, 20
events with Nch = 28 and 10 events with Nch = 29 contribute to the pT spectrum
at Nacc = 20. This resulting transverse momentum spectrum, shown in the bottom
left panel of figure 3.16, is the weighted sum of the average pT spectra (per event)
of the four different true multiplicities. The red lines in the bottom right panel of
the figure show the relative composition of the measured pT spectrum by the four
weighted pT spectra. These compositions show hardly any pT dependence. In this
example only four different true multiplicities are taken into account for better vis-
ibility. Yet, considering more of the true event multiplicities, which are relevant for
the measurement at Nacc = 20, gives a similar result. This shows, that the ‘local’
similarity of the different Nch-dependent pT spectra allows for a pT-independent
unfolding of a measured pT spectrum.
In addition to the red lines in the bottom right panel of figure 3.16, the pT-
independent fractions of the integrated number of measured particles with respect
to the different contributing true multiplicities are indicated by the coloured areas.
These fractions are in good agreement with the pT-dependent relative compositions
of the measured spectrum (red lines). Therefore, it can be concluded that these pT-
independent fractions can in good approximation be used to unfold the measured
pT spectra.

It should be emphasized, that the relative composition of the total number of par-
ticles assigned to a multiplicity Nacc is not equal to the corresponding relative
composition of the number of measured events assigned to Nacc, which is given by
the unfolding matrix P (Nch|Nacc). This is shown in figure 3.17, where the upper
part illustrates the unfolding of the events as discussed in the previous section, and
the lower part illustrates the unfolding of the particles. The following reasoning
aims to find out how the integral particles assigned to Nacc is composed of particles
originating from events with true multiplicity Nch.
Using equation 3.4.6, the total number of particles expected to originate from all
events with a true multiplicity Nch can be expressed by:

n̂par(Nch) = Nch · n̂evt(Nch) = Nch ·
∑
Nacc

P (Nch|Nacc) nevt(Nacc) (3.4.8)

On the other hand, the number of particles measured in events at a certain Nacc is
given by:

npar(Nacc) = 〈Nch〉(Nacc) · nevt(Nacc) (3.4.9)

Here 〈Nch〉(Nacc) denotes the average true number of particles contributed by each
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Figure 3.17: Illustration of the relation between event unfolding and particle un-
folding.

of the nevt(Nacc) events:

〈Nch〉(Nacc) =
1

nevt(Nacc)

∑
N
′
ch

N
′

ch · P (N
′

ch|Nacc) nevt(Nacc)

=
∑
N
′
ch

N
′

ch · P (N
′

ch|Nacc) (3.4.10)

Combining equations 3.4.8 and 3.4.10 yields:

n̂par(Nch) =
∑
Nacc

Nch

〈Nch〉(Nacc)
P (Nch|Nacc) npar(Nacc) (3.4.11)

This can be simplified by defining a particle(!) unfolding matrix as:

Ppar(Nch|Nacc) =
Nch

〈Nch〉(Nacc)
P (Nch|Nacc) (3.4.12)

The resulting unfolding relation for the number of measured particles

n̂par(Nch) =
∑
Nacc

Ppar(Nch|Nacc) npar(Nacc) (3.4.13)
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Figure 3.18: Reconstructed, unfolded and generated multiplicity distributions of the
integral of particles from the MC simulation. For the reconstructed
particle multiplicity distribution the x-axis label ’Multiplicity’ refers
to Nacc and for the others it represents Nch.

is similar to the relation for the number of measured events given by equation 3.4.6.
Analogously to the (event) unfolding matrix P (Nch|Nacc), the particle unfolding
matrix satisfies the following normalization condition for each Nacc:∑

Nch

Ppar(Nch|Nacc) =
∑
Nch

Nch

〈Nch〉(Nacc)
P (Nch|Nacc) = 1 (3.4.14)

Ppar(Nch|Nacc) represents the probability that a particle(!) whose event was mea-
sured with a multiplicity Nacc actually comes from an event with true multiplicity
Nch. It should be emphasized, that this particle unfolding matrix contains the
composition fractions of the measured particles, which can be used to unfold the
measured pT spectra.

Analogously to the event unfolding matrix, the particle unfolding matrix can be
verified by applying it to the reconstructed multiplicity distribution of particles
npar(Nacc)MC obtained from the Monte Carlo simulation and by comparing the un-
folded result with the generated true multiplicity distribution of particles npar(Nch)MC.
This is shown in figure 3.18, where npar(Nacc)MC is indicated by the blue, npar(Nch)MC

by the green and the unfolded multiplicity distribution of particles n̂par(Nch)MC by
the red line. The bottom panel of the figure shows the ratio between the unfolded
and the generated distribution. Both are in perfect agreement.
Furthermore, the unfolding procedure can be applied to the reconstructed pT spec-
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Figure 3.19: Unfolded (left) and generated (right) pT spectra in pp collisions at
√
s = 5.02 TeV as a function of multiplicity obtained from the Monte

Carlo simulation.

tra of the Monte Carlo simulation. Figure 3.19 shows the resulting unfolded pT

spectra on the left panel and for comparison the generated pT spectra on the right
panel. The spectra are similar, but are not in perfect agreement. This will be
discussed quantitatively in section 3.5.2. The discrepancy is probably due to the
applied approximation where the slight pT dependence of the relative composition
of the measured pT spectra was ignored.

Finally, the unfolding procedure can be applied to the data. Figure 3.20 shows
the measured as well as the unfolded pT spectra obtained by the Bayesian unfold-
ing method. The unfolding procedure is capable to extract the pT spectra as a
function of the true charged particle multiplicity up to Nch ≈ 84 from the measured
pT spectra, which only extend up to a measured multiplicity of about Nacc ≈ 70.
Based on these unfolded pT spectra, their moments can be calculated as described
in section 3.3. The resulting 〈pnT〉 (Nch) are shown in figure 3.21. These moments
look very similar to the ones obtained with the re-weighting method. A quantitative
comparison of the the results from the two methods is shown in section 3.5.4.
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Figure 3.20: pT spectra in pp collisions at
√
s = 5.02 TeV as a function of multi-

plicity before (left) and after (right) unfolding.
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Figure 3.21: The left panel shows the first three moments of the unfolded pT spectra
as a function of true multiplicity Nch with statistical uncertainties. In
the right panel the mean and RMS are shown.
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ID Description Nominal Variations
lower higher

1 max. DCAz 2 cm 1 cm 5 cm
2 max. DCAxy 7σ 4σ 10σ
3 max. ratio of crossed rows over findable clusters 0.8 0.7 0.9
4 max. fraction of shared TPC clusters 0.4 0.2 1
5 max. χ2

TPC per TPC cluster 4 3 5
6 max. χ2

ITS per ITS cluster 36 25 49
7 one hit in the SPD required not required
8 geometric length (dead TPC area) 3 cm 2 cm 4 cm
9 geometric length (track length) 130 120 140
10 max. χ2

TPC−ITS 36 25 49

Table 3.1: Track selection criteria and their respective variations.

3.5 Systematic uncertainties and results

In order to obtain an estimate for the systematic uncertainties of the moments
〈pnT〉 (Nch) determined in this work, two different aspects are taken into account.
On the one hand systematic effects of the choice of track quality constraints are
studied. On the other hand the reliability of the re-weighting respectively unfolding
method is tested by applying them to the reconstructed pT spectra obtained from
the Monte Carlo simulation.

3.5.1 Track selection

To study the systematic effects of the track selection on the moments 〈pnT〉 (Nch),
their stability against a variation of the selection criteria is probed. The track
quality requirements used in this work as well as their respective variations are
listed in table 3.1. They follow the current ‘standard’ as used in [Ali17]. For each of
these settings, the track reconstruction and 〈pnT〉 (Nch) determination is performed.
If the virtual detector in the Monte Carlo simulation would perfectly describe the
behaviour of ALICE, the efficiency correction would cancel out any effect of the track
selection criteria. The residual effects on 〈pnT〉 (Nch), caused by an imperfection of
this detector description, are therefore assigned as systematic uncertainties. Most
of the track constraints used in this work (except for the requirement of one hit in
the SPD) are varied to a lower and a higher value with respect to the nominal one.
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Figure 3.22: Systematic uncertainties of 〈pT〉 (Nch) (upper panel) and
√
〈p2T〉(Nch)

(lower panel) obtained via Bayesian unfolding for the different track
selection criteria described in table 3.1. For the criteria which are
varied to a lower and a higher value, the maximum effect on 〈pT〉
respectively

√
〈p2T〉 is taken into account for each multiplicity Nch.
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For these cases, the largest deviation from the nominal 〈pnT〉 (Nch) spectrum is used
as symmetric systematic uncertainty. This is done separately for each multiplicity
Nch.

As an example, figure 3.22 shows the resulting systematic uncertainties of 〈pT〉 (Nch)

(upper panel) and
√
〈p2T〉(Nch) (lower panel) obtained using the Bayesian unfolding

method. The different track variations are labelled according to their ID defined in
table 3.1. The black line indicates the total systematic uncertainty, which is calcu-
lated by adding the contributions from the different variations of the track selection
criteria in quadrature. It reaches the highest values of about 1.5 % (mean) respec-
tively 2.0 % (RMS) for multiplicities Nch ≈ 70. The two main contributions to the
total systematic uncertainties represent variations of the required track length in
the TPC (indicated in blue, ID:9 and red, ID:8).

3.5.2 Monte Carlo closure test

The systematic uncertainty of the re-weighting and the Bayesian unfolding method
is studied by means of a so-called Monte Carlo closure test. In the Monte Carlo sim-
ulation the true pT spectra produced by the event generator are known. Therefore,
the corresponding moments 〈pnT〉 (Nch)MC can be compared to the ones obtained by
applying the two different methods to the reconstructed pT spectra. Since this is a
pure comparison within the Monte Carlo simulation, it is important not to apply
the particle composition correction on the reconstructed spectra.

The purple markers in the upper panel of figure 3.23 show 〈pT〉 (Nch)MC as it is
generated by the simulation. The blue markers represent 〈pT〉 (Nacc)MC of the re-
constructed pT spectra. In red and green the re-weighted and unfolded 〈pT〉 (Nch)MC

are displayed. Both methods have a similar effect on the input spectra (for details
see next section). In the lower part of the upper panel, the ratios between the re-
weighted respectively unfolded and the generated 〈pT〉 (Nch)MC are shown. These
ratios follow a characteristic trend, which appears to be dominated by two different
effects: For Nch < 10 the ratios are above unity and show an excess, which has
its maximum at low multiplicities Nch ≈ 1. At higher multiplicities Nch > 10, the
ratios are below unity and develop into a linear slope. For the systematic uncertain-
ties, this trend is extrapolated in order to smooth the fluctuations of the ratio at
high multiplicities Nch > 50, which is caused by limited statistics in the generated
spectra. This is indicated by the black line in the lower part of the upper panel.
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Figure 3.23: Monte Carlo closure test for 〈pT〉MC (top panel) and
√
〈p2T〉MC

(bot-
tom panel). The x-axis label ’Multiplicity’ refers to Nacc for the recon-
structed mean respectively RMS and otherwise represents Nch.
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The maximum systematic uncertainties for the low multiplicity region is 4 % and for
Nch > 10 the it is below 3 %. In the lower panel of figure 3.23 the same is shown for
the RMS. The ratios between the re-weighted respectively unfolded

√
〈p2T〉(Nch)MC

follow a similar trend to the one observed for 〈pT〉 (Nch)MC. Here, for low multiplic-
ities the deviation to the generated

√
〈p2T〉(Nch)MC is up to 6 % and for Nch > 10 it

is still below 3 %.
The second and third moments show the same behaviour (no picture). The maxi-
mum values of the ratios in the low respectively high multiplicity regions are: 〈p2T〉:
17 % and 6 %; 〈p3T〉: 40 % and 9 %. Those are significantly higher than the ones
obtained for the mean and the RMS.

3.5.3 Total systematic uncertainty

The resulting total systematic uncertainty of the moments 〈pnT〉 (Nch) is calculated
by adding the contributions from the track selection and the closure test in quadra-
ture. Even though the systematic uncertainty from the Monte Carlo closure test
has an asymmetric character, it is symmetrized in this work. Therefore, the total
systematic uncertainty is a rather conservative estimate. In figure 3.24 the resulting
〈pnT〉 (Nch) obtained for the ALICE measurement in pp collisions at

√
s = 5.02 TeV

by the re-weighting (upper panels) and the Bayesian unfolding method (lower pan-
els) are shown with statistical and systematic uncertainties. The left panels show
the first three moments and the right panels show the mean and RMS.
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Figure 3.24: Re-weighted moments of the measured pT spectra (upper panels) and
moments of the unfolded pT spectra (lower panels) as a function of true
multiplicity Nch with statistical and systematic uncertainties. The left
panels show the first three moments and the right panels show the
mean and RMS.
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Figure 3.25: Comparison of re-weighting and Bayesian unfolding method for the
mean (left) and the RMS (right).

3.5.4 Comparisons of the different methods

In figure 3.25, 〈pT〉 (Nch) (left panel) and
√
〈p2T〉(Nch) (right panel) are compared

for the re-weighting and the Bayesian unfolding method. The bottom panel in both
plots shows the ratio of the unfolded over the re-weighted results. Both methods
are in good agreement, even though they are conceptionally very different. Only at
low multiplicities, Nch ≤ 10 for the mean and Nch ≤ 20 for the RMS, the unfolding
method yields a systematically higher value in the order of half a percent. This
difference is less pronounced for the mean than for the RMS.
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Summary and outlook

In this work the mean transverse momentum of primary charged particles produced
in proton-proton collisions at a centre-of-mass energy

√
s = 5.02 TeV is studied as

a function of the event multiplicity.
The unidentified charged particles are measured within a kinematic range of
0.15 GeV/c ≤ pT < 10 GeV/c and |η| < 0.8 using the Inner Tracking System
and the Time Projection Chamber of the ALICE experiment at the LHC. In this
work, the event multiplicity is defined as the number of primary charged particles
within in the afore mentioned kinematic range. Not all of these particles can be
measured by the detector. Therefore, the raw particle yield needs to be corrected
for these efficiency losses. This is done by means of a Monte Carlo simulation,
which consists of an event generator (PYHTIA8) and a virtual model of the
detector (GEANT3). Additionally, the true correlation between the transverse
momentum spectra and the event multiplicity is lost in the measurement. In this
work, two different approaches to reconstruct this correlation are presented. Both
of them rely on a proper understanding of the detector response, which is obtained
from the Monte Carlo simulation. At first, the conventional method used in prior
ALICE publications (e.g. in [Ali13] and [Ali10]) is introduced and applied. It
is based on re-weighting the moments of the measured pT spectra. Secondly, an
alternative procedure is applied, which aims to unfold the measured transverse
momentum spectra using a Bayesian unfolding algorithm. The resulting mean and
higher moments of these spectra are found to be in good agreement with the ones
obtained with the re-weighting method. Only for low event multiplicities Nch . 10

the unfolding method yields a slightly higher value in the order of 0.5 %.

As a next step of the analysis, the moments 〈pnT〉 (Nch) of the pT spectra
could be compared at different centre-of-mass energies. Up to now, data
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from pp collisions have been measured by ALICE at collision energies of
√
s = 0.9, 2.76, 5.02, 7, 8, and 13 TeV, covering more than one order of

magnitude in energy. Furthermore, 〈pnT〉 (Nch) could be obtained at the same
centre-of-mass energy per nucleon pair

√
sNN = 5.02 TeV for the three different

collision systems of the LHC (pp, p-Pb and Pb-Pb).
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Appendix A

Kinematic variables

The momentum of particles produced in high-energy collisions in the plane trans-
verse to the beam axis in terms of the polar emission angle θ and total momentum
|p| is given by:

pT = |p| · sin(θ) (A.1)

The momentum component along the beam axis is accordingly:

pL = |p| · cos(θ) (A.2)

Since the longitudinal momentum is hard to measure, another important observable
is the so-called rapidity y:

y =
1

2
ln
(
E + pL

E − pL

)
(A.3)

Here, E is the energy of the particle. For ultra-relativistic particles the approxi-
mation E ≈ |p| /c can be used to simplify this equation. The resulting quantity is
called pseudorapidity:

η =
1

2
ln
(
|p|+ pL

|p| − pL

)
(A.4)

In principle, the total momentum |p| is not known, but from geometrical consider-
ations it can be expressed using the polar emission angle θ as:

η = −ln [tan(θ/2))] (A.5)
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Appendix B

Runlist

These are the specifications of the data sample used in this work:

Collision system: proton - proton
Energy:

√
s = 5.02 TeV

Data taking period: LHC15n_pass4
Monte Carlo production: LHC16k5a (PYTHIA8)
Runlist: 244340, 244343, 244351, 244355, 244359, 244364,

244377, 244411, 244416, 244418, 244421, 244453,
244456, 244480, 244481, 244482, 244483, 244484,
244531, 244540, 244542, 244617, 244618, 244619,
244626, 244627, 244628
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