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1 Goal of Simulation

This simulation aims at an understanding of chemical bonds and some standard methods
used for the discussion of the electronic structure of molecules and solids.
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2 Born-Oppenheimer Approximation

The standard Hamiltonian for the discussion of electronic structure is given by

Ĥ = T̂n + Ĥe (2.1)

Ĥe = T̂e + V̂n−e + V̂e−e + V̂n−n . (2.2)

Here T̂n represents the kinetic energy of the (K) ions (nuclei) of the system,

T̂n =
K∑
α=1

(−i~∇Rα)2

2Mα

, (2.3)

where ∇Rα abbreviates the gradient with respect to the coordinates Rα of the ion α (with
mass Mα). The second component of Ĥ is the electronic Hamiltonian Ĥe. Its first contri-
bution is the kinetic energy of the (N) electrons,

T̂e =
N∑
i=1

(−i~∇i)
2

2m
, (2.4)

where the gradient with respect to the position ri of the i-th electron has been expressed
as ∇i. V̂n−e represents the interaction between electrons and ions (with charges Zαe — the
convention e = |e| is used throughout this text),

V̂n−e = −
K∑
α=1

N∑
i=1

Zαe
2

|Rα − ri|
, (2.5)

and V̂e−e denotes the interaction between the electrons,

V̂e−e =
N∑

i<j=1

e2

|ri − rj|
=

1

2

N∑
i,j=1;i 6=j

e2

|ri − rj|
. (2.6)

Finally, Ĥe contains the repulsion between the ions,

V̂n−n =
K∑

α<β=1

ZαZβe
2

|Rα −Rβ|
. (2.7)

For the electronic problem V̂n−n just represents an additive constant, which is included in
Ĥe only for convenience.

The observables one is ultimately interested in all depend in one way or another on
the eigenstates of the Hamiltonian (2.1). Unfortunately, the solution of the corresponding
Schrödinger equation is extremely demanding, due to (i) the coupling of the electronic and
ionic degrees of freedom and (ii) the sheer number of the degrees of freedom involved. The
first step towards a solution usually is the Born-Oppenheimer (BO) approximation. Relying
on the different time scales of the electronic and the ionic motion, the BO approximation
decouples the electronic and ionic degrees of freedom (for a more detailed discussion see
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e.g. [1]). In the BO approximation the eigenstates of the Hamiltonian (2.1) are factorized
into an ionic wavefunction ϕik and an electronic wavefunction Ψk,

Λik(X;x) = ϕik(X) Ψk(X;x) , (2.8)

where X abbreviates all ionic coordinates, X ≡ {R1, . . .RK}, and x all electronic degrees
of freedom. The electronic wavefunction depends on the ionic positions only parametrically.
It satisfies the Schrödinger equation

Ĥe Ψk(X;x) = Ek(X) Ψk(X;x) , (2.9)

which is a stationary eigenvalue problem for any given set of Rα. For given electronic state
k, the eigenvalue Ek(X) then acts as the potential in which the ions are moving,{

T̂n + Ek(X)
}
ϕik(X) = Hik ϕik(X) . (2.10)

Thus, at least in principle, Eq.(2.9) has to be solved for all possible arrangements {R1, . . .RK}
of the ions. Ek(X) is often called the BO energy surface or BO potential, or simply the
energy surface. When plotting this quantity, usually the ground state energies of the con-
stituent atoms are subtracted.

3 Density Functional Theory

3.1 Basics

This section provides the theoretical background for the method used in the program package
DIAMOL for the solution of the many-electron problem (2.9).

Within the Born-Oppenheimer approximation the standard Hamiltonian of a stationary
many-electron system is given by Eq.(2.2), in which, however, the additive constant V̂n−n
is usually dropped as long as only the electronic problem is considered. The many-electron
eigenstates Ψk corresponding to Ĥe are obtained by solution of the Schrödinger equation
(2.9) for any given set {R1, . . .RK}. However, even in the case of the ground state Ψ0, on
which we will focus in the following, the solution of Eq.(2.9) is highly non-trivial. In fact, an
(essentially) exact solution is only available for the ground states of rather simple systems,
such as the Helium atom or the Hydrogen dimer. While extremely accurate |Ψk〉 can still
be obtained for molecules of moderate size or high symmetry, approximations are necessary
as soon as the number of atoms involved increases.

For a large variety of molecular and condensed matter systems effective single-particle
approaches turn out to give reasonably accurate results for many ground state observables
of interest. The most well-known approach of this type is the Hartree-Fock (HF) method,
which is obtained by approximating the ground state in terms of a (Slater) determinant of
single-particle states,1

Ψ0(r1σ1, . . . rNσN) ≈ 1√
N !

det

 φ1(r1σ1) · · · φN(r1σ1)
...

...
φ1(rNσN) · · · φN(rNσN)

 (3.1)

1In (3.1) the spin degree of freedom has been expressed in terms of the variable σ, rather than by
understanding φi as a two-spinor.
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(σi denotes the spin-orientation of the i-th electron with respect to some arbitrary axis).
The single-particle states φi(rσ) in (3.1) are the N energetically lowest solutions of the HF
equations. In these equations each electron experiences the same average potential, which, in
addition to the ionic potential, contains the direct Coulomb repulsion between the electrons
and an exchange (Fock) component which reflects the Pauli exclusion principle.

The HF approximation misses, however, all correlation contributions: neither the state
(3.1) and the corresponding total HF energy nor the average single-particle potential account
for the so-called Coulomb correlation, i.e. the fact that, at any instant of time, an electron
recognizes all other electrons at exactly the positions where they are. This deficiency is
partially overcome by the currently most often used effective single-particle approach, density
functional theory (DFT).

DFT is based on the observation that the ground state of a many-particle system is
uniquely determined by the associated ground state density,

n0(r) = N
∑

σ1,...σN

∫
d3r2 . . . d

3rN |Ψ0(rσ1, r2σ2 . . . rNσN)|2 . (3.2)

The density n0(r) is characteristic for the ionic potential experienced by the electrons: two
different ionic potentials will lead to two different n0(r) and vice versa (as long as the ground
state is non-degenerate — which we will always assume in the following). This result allows
to understand the ground state energies E0 obtained for all possible ionic potentials as a
unique functional of the corresponding ground state densities, E0[n], and the same is true
for the various components of E0. Moreover, one can show by use of the Ritz variational
principle that, for given ionic potential, the functional E0[n] is minimized by the density
n0(r) which corresponds to this ionic potential. The solution of the Schrödinger equation
(2.9) for the ground state has thus been recast as a minimization problem for the energy
functional E0[n]. (for a more detailed and mathematically more careful discussion of DFT
see [1] or [2]).

3.2 Kohn-Sham equations

On this basis one can then map the full electronic problem (2.9) onto an effective single-
particle problem with a ground state of the form (3.1), such that this effective single-particle
problem has the same n0(r) as the original interacting system. The single-particle states of
this so-called Kohn-Sham (KS) system satisfy the KS equation,{

− ~2∇2

2m
+ vs(r)

}
φi(rσ) = εi φi(rσ) . (3.3)

Here the states are again assumed to be ordered with respect to their eigenenergies εi,

ε1 ≤ . . . ≤ εN < εN+1 ≤ . . . (3.4)

(i represents both spatial and spin quantum numbers). The density corresponding to the
KS ground state (3.1) is given by

n(r) =
∑
σ=↑,↓

N∑
i=1

|φi(rσ)|2 =
∑
σ=↑,↓

∑
i

Θi |φi(rσ)|2 , (3.5)
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where the occupation function Θi has been introduced (and the index 0 at n has been
dropped for brevity). In the present situation, Θi is the standard step function,

Θi ≡
{

1 for εN ≥ εi
0 else

. (3.6)

The formulation (3.5) has, however, the advantage that it can be easily generalized to excited
states and to systems at finite temperature. The effective single-particle potential vs is given
by

vs(r) = vn−e(r) + vH[n](r) + vxc[n](r) . (3.7)

Here vn−e denotes the total ionic potential,

vn−e(r) = −
K∑
α=1

Zαe
2

|Rα − r|
, (3.8)

and the Hartree potential vH provides the electrostatic repulsion between the electrons,

vH[n](r) = e2
∫
d3r′

n(r′)

|r − r′|
. (3.9)

Finally, the so-called exchange-correlation (xc) potential vxc is defined as

vxc[n](r) =
δExc[n]

δn(r)
. (3.10)

It inherits all xc-effects from the xc-energy functional Exc. In order to define this quantity,
one expresses the total energy of the interacting system as

E0[n] = Ts[n] + En−e[n] + EH[n] + Exc[n] , (3.11)

where it has been indicated that not only E0 but also its components are functionals of the
density. Ts represents the kinetic energy of the KS particles,

Ts =
∑
i

Θi

∑
σ=↑,↓

∫
d3r φ∗i (rσ)

(−i~∇)2

2m
φi(rσ) , (3.12)

for which the explicit dependence on n is neither known nor required. En−e[n] is the electron-
ion interaction energy,

En−e[n] =

∫
d3r vn−e(r)n(r) . (3.13)

EH[n] represents the electrostatic energy of the electron charge distribution,

EH[n] =
e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
, (3.14)
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including their self-interaction energy. EH[n] is usually referred to as Hartree term. Finally,
Exc[n] is defined by Eq.(3.11). It absorbs all the many-body effects not contained in Ts, EH

and Eext, most notably the Fock exchange energy of the electrons. However, it also contains
the Coulomb correlation effects not present in the HF approximation. So, while the KS
ground state (3.1) is uncorrelated (i.e. determinantal) just as the HF ground state, the DFT
energy (3.11) and the KS single-particle potential (3.7) are not.

Taking Eqs.(3.5)–(3.14) together, one realizes that vs depends on the solutions of Eq.(3.3),
so that this equation has to be solved in a self-consistent fashion, similar to the HF equa-
tion. One starts with some trial density n(1) which allows to construct starting potentials
vH[n(1)](r) and vxc[n

(1)](r) (assuming Exc[n] to be given). Solution of (3.3) then provides

some orbitals φ
(2)
i which lead to an improved density n(2) via Eq.(3.5). The density n(2) can

be used to obtain improved potentials vH[n(2)](r) and vxc[n
(2)](r). This iterative procedure

is repeated until the maximum difference between the densities obtained in two successive
iterations falls below some predefined accuracy criterion.

3.3 Exchange-correlation energy functional

The decomposition (3.11) extracts exactly those contributions to the total energy functional,
which can be treated rigorously: EH and Eext are simple functionals of the density whose
evaluation is straightforward. Ts is the kinetic energy of the KS system which can be easily
evaluated from (3.12). At the same time, these ingredients of E0[n] usually dominate the
physics of the system. Sometimes even the complete neglect of Exc leads to an electronic
structure which is qualitatively correct. One would thus hope that an approximate account
of Exc is sufficient for an accurate description of many systems.

Given the fact that one does not even know Ts as a functional of n, one might still be
sceptical that a suitable approximation for Exc[n] can be found. However, there exists a
prominent interacting many-body system for which the density-dependence of the xc-energy
is very well known, the homogeneous (or uniform) electron gas (HEG). The HEG is a system
of infinitely many interacting electrons (distributed over all space) which do not experience
a spatially varying ionic potential. If the number of electrons per volume exceeds a certain
threshold, the ground state density n0 of the HEG is constant throughout all space, i.e.
homogeneous. Of course, the total energy of infinitely many particles is infinite, only the
energy density is a meaningful quantity, or, alternatively, the energy per particle. In fact,
due to the long range of the Coulomb interaction, even the energy density of infinitely many
electrons diverges. In order to resolve this problem, the charge of the electrons has to be
neutralized by a homogeneous ionic background charge density. As a result the net charge
in any suitably chosen volume of space is zero, so that the long-range Coulomb forces vanish
and a finite energy density is obtained.

The xc-energy density exc of the HEG is a simple function of n0, rather than a full
functional. Its exchange contribution is given by

eHEG
x (n0) = −3(3π2)1/3

4π
e2 n

4/3
0 . (3.15)

An analytical calculation of the correlation contribution is only possible in the high- and
low-density limits. One has to resort to Monte-Carlo simulations in order to extract the
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Figure 1: Correlation energy per electron (eHEG
c /n0) of the spin-saturated homogeneous

electron gas as a function of the Wigner-Seitz radius rs = ( 3
4πn0

)1/3/a0 (rs is the dimensionless
ratio between the radius of the sphere which is on average occupied by a single electron of
the gas and the Bohr radius a0 = ~2/(me2)) for several parameterizations: VWN [3], PZ
[4], OB [5]. Also given are the original Monte-Carlo data [5].

information on the (physically most relevant) regime of intermediate densities. The resulting
numerical data have been combined with the analytically known density-dependence in the
high- and low-density limit in accurate parameterizations. Several such parameterizations
of ec(n0) are available in the literature. Some up-to-date examples are shown in Fig. 1.

It remains to convert exc(n0) into a density functional which can be used for realistic
electronic structure calculations. This goal is achieved by the local density approximation
(LDA). In the LDA the xc-energy density of the actual, inhomogeneous system with local
density n(r) is locally approximated by the xc-energy density of an electron gas with constant
density n0 = n(r),

ELDA
xc [n] =

∫
d3r eHEG

xc (n(r)) . (3.16)

The LDA can be applied to arbitrarily inhomogeneous systems without encountering any
technical difficulties, since the corresponding xc-potential is a simple function of the local
density. For instance, for the exchange component one finds

vLDA
x (r) =

δELDA
x [n]

δn(r)
=
deHEG

x (n0)

dn0

∣∣∣∣
n0=n(r)

= −e2 [3π3n(r)]1/3

π
. (3.17)

However, the LDA treats any system locally as an electron gas, so that its technical appli-
cability should not be misinterpreted as validity. In fact, given its origin one would expect
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the LDA to be useful only for systems which resemble some of the properties of the HEG,
as for instance simple metals. In practice, the LDA turnes out to be surprisingly accurate
for many rather inhomogeneous systems.

Several classes of improved xc-functionals have been developed over time. Today, the
workhorse in DFT calculations is the so-called generalized gradient approximation (GGA),
in which the simple dependence of ELDA

xc on the density is augmented by a dependence on
the first (or even the second) gradient of n. More ambitious approximations involve a fully
nonlocal dependence on the density. Quite a number of flavors of both classes of functionals
exist in the literature, a discussion of which is beyond the scope of this brief introduction
(see e.g. [2]).

3.4 Exited states

So far, the complete DFT formalism is restricted to the ground state, since the prime ar-
gument underlying DFT is the energy minimum principle. However, such a variational
principle is also available for individual sectors of the many-electron Hilbert space, if a sym-
metry of the Hamiltonian allows to distinguish the sectors rigorously. For the Hamiltonian
(2.2) this is, for instance, the case for the projection of the total spin on some suitable axis,
Ŝz. Since the Hamiltonian (2.2) commutes with Ŝz,[

Ĥe, Ŝz
]

= 0 with Ŝz =
N∑
i=1

ŝz =
N∑
i=1

σi,z , (3.18)

all states Ψk, and in particular the ground state (3.1), can be chosen to be eigenstates of
both operators simultaneously,

Ŝz Ψk = Sk Ψk . (3.19)

While the ground state of the system corresponds to one particular eigenvalue S0 of Ŝz, states
with Sk 6= S0 have zero overlap with the ground state. Consequently, energy minimization
for fixed Sk 6= S0 does not lead to a collapse to the global ground state, but rather to the
lowest energy state for the Sk given. Sometimes spatial symmetries of the system introduce
additional quantum numbers (such as angular momentum) with respect to which the Hilbert
space can be decomposed. Once there exists a minimum principle for some sector, the DFT
scheme can be applied to it. In this way, one can establish a DFT treatment for certain
classes of excited states.

For convenience we note that the eigenvalue Sk can be combined with the total number
of electrons to the number of electrons with spin σ, Nσ,

1

2

(
N̂ + Ŝz

)
Ψk =

1

2
(N + Sk)Ψk = N↑Ψk (3.20)

1

2

(
N̂ − Ŝz

)
Ψk =

1

2
(N − Sk)Ψk = N↓Ψk . (3.21)

The states Ψk can therefore alternatively be classified with respect to N↑, N↓. Moreover, in
the case of determinantal states such as (3.1) the independence of the Hamiltonian of spin
implies that one can factorize the single-particle orbitals as

φi(rσ) = φαs(r)χs(σ) (i ≡ αs) , (3.22)
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where χs denotes the Pauli spinors (in the notation for the spin variable chosen),

χs(σ) = δsσ χ↑ =

(
1
0

)
χ↓ =

(
0
1

)
. (3.23)

3.5 Spin-density functional theory

The complete formalism sketched out so far can be extended to systems subject to additional
(external) magnetic fields.2 In this extended formalism, termed spin-density functional
theory (SDFT), the ground state spin-densities n↑ and n↓,

nσ(r) = N
∑

σ2,...σN

∫
d3r2 . . . d

3rN |Ψ0(rσ, r2σ2 . . . rNσN)|2 , (3.24)

play the same role as the density n plays in the formalism without magnetic field. It turns
out that application of SDFT is also advantageous if there is no external magnetic field:
SDFT allows to account for the spin-dependence of Exc in a rigorous fashion, which is not
possible by a functional of the total density n. This aspect is of crucial importance for
all systems with a non-zero magnetic moment, such as open-shell atoms and molecules or
ferromagnetic solids.

The KS equation of SDFT is given by{
− ~2∇2

2m
+ vσs [n↑, n↓](r)

}
φασ(r) = εασ φασ(r) , (3.25)

with the KS potential decomposed in similar manner as in (3.3),

vσs [n↑, n↓](r) = vn−e(r) + vH[n](r) + vσxc[n↑, n↓](r) . (3.26)

vn−e and vH are still given by Eqs.(3.8) and (3.9), respectively. The total density required
for Eq.(3.9) is obtained as the sum of the two spin-contributions,

n(r) = n↑(r) + n↓(r) (3.27)

nσ(r) =
∑
α

Θασ|φασ(r)|2 . (3.28)

For both spin-channels the energetically lowest φασ are occupied (in the case of the ground
state). However, the number Nσ of electrons with spin σ is only restricted by the total
number of electrons, N ,

N = N↑ +N↓ . (3.29)

Within this restriction, the occupation of each spin can be chosen freely, since each pair of
N↑, N↓ defines a seperate sector (with total spin-projection S = N↑ −N↓) of the N -electron

2For simplicity, the discussion is here restricted to magnetic fields which point into the same direction
throughout all space.
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Hilbert space for which the Ritz variational principle and thus SDFT is valid. For given
N↑, N↓ the occupation numbers are thus given by

Θασ =

{
1 for εασ ≤ εNσ with

∑
α Θασ = Nσ ,

0 for εασ > εNσ
. (3.30)

The spin-dependent xc-potential is obtained as functional derivative of the xc-energy func-
tional Exc[n↑, n↓] of SDFT,

vσxc[n↑, n↓](r) =
δExc[n↑, n↓]

δnσ(r)
, (3.31)

which, in turn, is defined by an appropriate decomposition of the total energy,

E[n↑, n↓] = Ts[n↑, n↓] + En−e[n] + EH[n] + Exc[n↑, n↓] (3.32)

Ts[n↑, n↓] =
∑
σ=↑,↓

∑
α

Θασ

∫
d3r φ∗ασ(r)

(−i~∇)2

2m
φασ(r) . (3.33)

The concept of the LDA can also be extended to SDFT, relying on the xc-energy density
eHEG
xc (n↑, n↓) of a spin-polarized HEG with gas densities n0,↑ 6= n0,↓. The local spin-density

approximation (LSDA) is then defined as

ELSDA
xc [n↑, n↓] = ELSDA

x [n↑, n↓] + ELSDA
c [n↑, n↓] (3.34)

ELSDA
x [n↑, n↓] = −3(6π2)1/3

4π
e2
∑
σ=↑,↓

∫
d3r n4/3

σ (r) (3.35)

ELSDA
c [n↑, n↓] =

∫
d3r eHEG

c (n↑(r), n↓(r)) (3.36)

In the following, we will no longer distinguish between LDA and LSDA: the term LDA
should automatically be understood as LSDA whenever spin-polarization is present.

4 Diatomic Molecules

In the case of diatomic molecules the ionic potential (3.8) can be written as3

vn−e(r) = − Z1

|r + (0, 0, R/2)|
− Z2

|r − (0, 0, R/2)|
, (4.1)

where the two nuclei with internuclear separation R have been chosen to sit on the z-axis
at distances ±R/2 from the origin (compare Fig. 2). For convenience the quantity R/2 will
be abbreviated by f in the following.

Due to the rotational symmetry of vn−e with respect to the z-axis the solutions of (3.25)
can be classified by the corresponding angular momentum projection quantum number m.
One can thus factorize the eigenstates as

φασ(r) = φ̄jmσ(ρ, z) eimϕ , m = 0,±1,±2, . . . , (4.2)

3From now on atomic units ~ = m = e2 = 1 will be used.
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Figure 2: Geometry of two-center problem.

where, for the moment, cylindrical coordinates ρ, ϕ, z have been used for φ̄jmσ. The integer
j = 1, 2, . . . denotes the sequence of levels for given m, which are again assumed to be
energetically ordered. The molecular single-particle orbitals are denoted as σ, π, δ, ϕ, . . .-
states for |m| = 0, 1, 2, 3, . . ., respectively.

Similarly, the N -electron ground state of a diatomic molecule can be classified in terms
of the total angular momentum projection Λ and the total spin projection S (see e.g. [6]).
In the case of the Slater determinant (3.1) these quantities can be expressed in terms of the
angular momentum projections m of the individual states of type (4.2) in the determinant
and the spin projections σ which are multiplied with them according to (3.22),

Λ =
∞∑

m=−∞

m
∑
σ=↑,↓

∞∑
j=1

Θjmσ , (4.3)

S =
1

2

∞∑
m=−∞

[
∞∑
j=1

Θjm↑ −
∞∑
j=1

Θjm↓

]
=

1

2
(N↑ −N↓) . (4.4)

The standard labelling of the N -electron states is 2S+1Λ, with Λ = 0, 1, 2, 3, . . . expressed
in terms of upper case greek letters as Σ,Π,∆,Φ, . . ., respectively. Obviously, for any state
with Λ > 0 there is an energetically degenerate state with angular momentum −Λ, which
is, however, not distinguished from the state with Λ > 0.

The potential (4.1) is not only axially symmetric, it is also symmetric under inversion
with respect to any plane which contains the interatomic axis. As a consequence, Σ-states
can either change sign under this inversion or not (since a second inversion leads back to the
original state). Accordingly, they are labelled as Σ− or Σ+ states. In the case of states with
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Λ 6= 0 the inversion with respect to a plane containing the interatomic axis just transforms
the state with Λ > 0 into the state −Λ and vice versa.4

If, in addition, Z1 = Z2 one also has inversion symmetry with respect to z → −z, so
that the states are either even or odd under this transformation, which is indicated by a
subscript g (gerade) or u (ungerade).5

In order to distinguish the electronic ground state from electronic excited states, often
an additional letter is used: X denotes the ground state and A,B,C, . . . label the 1st, 2nd,
3rd, . . . excited state, respectively. However, this notation is not strictly met: sometimes
lower case letters or even letters out of the alphabetical order are utilized for the excited
states. The ground state of diatomic molecules often is a state with highest symmetry, Σ+

(g),

which is fully characterized by X2S+1Σ+
(g).

The bond types of diatomic molecules can be understood by analysis of the molecular
(two-center) orbitals resulting from linear combination of atomic orbitals (LCAO). The
latter have s, p, d, . . . character. The linear combination of two s-orbitals centered around
the nuclei at ±f is always axially symmetric and thus corresponds to a molecular single-
particle state with m = 0, i.e. to a σ-orbital. The same is true for the linear combination of
two pz-orbitals, but also for the combination of two dz2-orbitals and the combinations s−pz,
s − dz2 , pz − dz2 etc. All these atomic orbitals with matching axial symmetry hybridize
in molecules (provided, they have at least some limited overlap, of course). If the atomic
orbitals both correspond to m = 1 they can form molecular π-orbitals, if they share a nodal
plane which also contains the internuclear axis. Possible combinations are px − px and
py − py, but also the states dyz and dzx could be involved. Finally, a δ-state may be formed
from the combinations dxy − dxy or dx2−y2 − dx2−y2 (in this case the atomic orbitals to be
combined have to share two nodal planes which also contain the internuclear axis). If the
angular momentum projections of the atomic orbitals do not match, the orbitals are called
non-bonding.

Before these bond types are illustrated by some examples, one final characterization of
molecular orbitals remains to be introduced. Consider, for simplicity, the ground state of
the H+

2 molecule, i.e. a single electron in the field of two protons. The atomic orbitals in the
corresponding molecular ground state are the 1s-orbitals φ1 and φ2 of the Hydrogen atoms
at the positions of the two protons,[

T̂ + V̂i

]
φi = εi φi .

Then two possible linear combinations exist,

Φ+ =
1√
2

(φ1 + φ2) and Φ− =
1√
2

(φ1 − φ2) ,

4If such a plane has an angle α with respect to the x-axis, inversion with respect to this plane transforms
a point with angle ϕ into a point angle 2α− ϕ. The phase of a molecular single-particle state thus behaves
as

eim(α−ϕ) = eimα e−imϕ .

When summing up the individual contributions according to Eq.(4.3), one thus ends up with −Λ, while
eimα generates an irrelevant global phase.

5This classification is, in fact, used for any axially symmetric problem with an additional inversion
symmetry with respect to a plane perpedicular to the axis.
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where all states involved have been assumed to be real (which is always possible for bound
states) and both φ1 and φ2 are chosen to be positive (they do not have nodes). Given these
choices, Φ+ is nodeless, while Φ− has a nodal plane in the middle between the two nuclei.
At first glance, both are candidates for the ground state of H+

2 . However, the two states are
quite different in energy. This is most easily understood by using stationary perturbation
theory to evaluate the molecular energy for the states Φ±. Combining the states Φ± with
the Hamiltonian for the H+

2 molecule,

Ĥe = T̂ + V̂1 + V̂2 + V̂n−n ,

one obtains

〈Φ±|Φ±〉 = 1± 〈φ1|φ2〉

E± =
〈Φ±|T̂ + V̂1 + V̂2|Φ±〉

〈Φ±|Φ±〉
+
Z1Z2

R

=
ε1 + ε2

2
+
〈φ1|V̂2|φ1〉+ 〈φ2|V̂1|φ2〉

2 [1± 〈φ1|φ2〉]
± 〈φ1|V̂2|φ2〉+ 〈φ2|V̂1|φ1〉

2 [1± 〈φ1|φ2〉]
+
Z1Z2

R
. (4.5)

If the overlap of the two 1s-orbitals is small, 〈φ1|φ2〉 � 1, one can expand the energy in
powers of the overlap. Keeping only the lowest order corrections, one arrives at

E± =
1

2

{
ε1 + ε2 +

[
〈φ1|V̂2|φ1〉+ 〈φ2|V̂1|φ2〉

]
[1∓ 〈φ1|φ2〉]

±
[
〈φ1|V̂2|φ2〉+ 〈φ2|V̂1|φ1〉

]
[1∓ 〈φ1|φ2〉]

}
+
Z1Z2

R
.

The difference between the total energies of Φ+ and |Φ− is thus obtained as

E+ − E− = −
[
〈φ1|V̂2|φ1〉+ 〈φ2|V̂1|φ2〉

]
〈φ1|φ2〉+ 〈φ1|V̂2|φ2〉+ 〈φ2|V̂1|φ1〉 .

The potentials V̂1 and V̂2 are attractive all over space, while φ1,2 is positive everywhere.
Consequently, one finds

−
[
〈φ1|V̂2|φ1〉+ 〈φ2|V̂1|φ2〉

]
〈φ1|φ2〉 > 0

〈φ1|V̂2|φ2〉+ 〈φ2|V̂1|φ1〉 < 0 .

The questions is which of two terms dominates? For a definitive answer one has to evaluate
them explicitly (at this point we finally implement Z1 = Z2 = 1). Using the form of the
1s-orbitals,

φi(r) =
1√
π
e−|r−Ri| ,

one obtains

〈φ1|V̂2|φ1〉 = − 1

π

∫
d3r

e−2|r−R1|

|r −R2|
= 〈φ2|V̂1|φ2〉

〈φ1|V̂2|φ2〉 = − 1

π

∫
d3r

e−|r−R1| e−|r−R2|

|r −R2|
= 〈φ2|V̂1|φ1〉

〈φ1|φ2〉 =
1

π

∫
d3r e−|r−R1| e−|r−R2| .

13



All three integrals can be performed analytically, using prolate elliptical coordinates (see
Section 5 for details),

〈φ1|V̂2|φ1〉 = − 1

π
f 3

∫ ∞
1

dξ

∫ 1

−1
dη

∫ 2π

0

dϕ (ξ2 − η2) e
−2f(ξ+η)

f(ξ − η)

= −2f 2

∫ ∞
1

dξ e−2fξ
∫ 1

−1
dη (ξ + η) e−2fη

= − 1

R

[
1− e−2R(1 +R)

]
〈φ1|V̂2|φ2〉 = − 1

π
f 3

∫ ∞
1

dξ

∫ 1

−1
dη

∫ 2π

0

dϕ (ξ2 − η2) e
−f(ξ+η) e−f(ξ−η)

f(ξ − η)

= −2f 2

∫ ∞
1

dξ e−f2ξ
∫ 1

−1
dη (ξ + η)

= −e−R [1 +R]

〈φ1|φ2〉 =
1

π
f 3

∫ ∞
1

dξ

∫ 1

−1
dη

∫ 2π

0

dϕ (ξ2 − η2) e−f(ξ+η) e−f(ξ−η)

= 2f 3

∫ ∞
1

dξ e−2fξ
∫ 1

−1
dη (ξ2 − η2)

= e−R
[
1 +R +

R2

3

]
.

For the expansion in powers of 〈φ1|φ2〉 to be legitimate, R has to be sufficiently large. This
condition is clearly met for R ≥ 3 (atomic units are used here). If one analyzes

〈φ1|V̂2|φ1〉 〈φ1|φ2〉 = −R
3
e−R

[
1 +

3

R
+

3

R2

]
+
R2

3
e−3R

[
1 +

1

R

] [
1 +

3

R
+

3

R2

]
〈φ1|V̂2|φ2〉 = −Re−R

[
1 +

1

R

]
in this range, one finds the difference E+ − E− to be negative.

A more complete picture is provided by Fig. 3. The figure shows that the symmetric
combination of the atomic orbitals yields a lower energy for all R and thus represents the
ground state. In fact, the energy surface of Φ+ is attractive over a substantial range, while
Φ− produces a completely repulsive energy surface. The origin of this behavior can be traced
to the individual terms in (4.5). If one inserts the explicit results into (4.5), one finds that
the electrostatic repulsion between the nuclei essentially cancels with the attraction of the
electron by the second nucleus, 〈φ1|V̂2|φ1〉+ 〈φ2|V̂1|φ2〉,

E± − ε1s =
e−2R(1 +R)± e−R(1 +R +R2/3)

R[1± e−R(1 +R +R2/3)]
∓ e−R [1 +R]

[1± e−R(1 +R +R2/3)]
.

These electrostatic energies both have the Coulombic 1/R-dependence, but differ in sign.
Consequently, the exchange term 〈φ1|V̂2|φ2〉+ 〈φ2|V̂1|φ1〉 is decisive for bonding: it enters as
an attractive term for the Φ+ state, but in repulsive form in the case of Φ−.
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Figure 3: Energy surfaces E± − ε1s, Eq.(4.5), for the H+
2 molecule as a function of the

interatomic separation R.

Molecular states without nodal planes perpendicular to the interatomic axis are therefore
called bonding orbitals, those with such nodal planes anti-bonding. The latter states are
denoted by an additional asterisk, e.g. as π∗-orbitals. As an illustration, Fig. 4 shows the
lowest bonding and anti-bonding states of the Hydrogen dimer. A second example for a
bonding σ-orbital is displayed in Fig. 5. In this case, however, the molecular state is formed
from two atomic pz-orbitals. Bonding and anti-bonding variants also exist for the molecular
orbitals with m > 0. A typical bonding π-orbital is also provided by Fig. 5, δ-orbital by
Fig. 6.

5 Computational Details

In this Section the numerical procedures used in the program package DIAMOL are discussed
in some detail.

The potential (4.1) is axially symmetric with respect to the z-axis, which suggests to
apply cylindrical coordinates ρ, ϕ, z for the solution of the KS equation (3.25). However,
DIAMOL rather uses prolate spheroidal coordinates ξ, η, ϕ for this task, in accordance with
the basis set utilized for the representation of the KS orbitals (see below). While ϕ is the
usual azimuthal angle with respect to the z-axis (0 ≤ ϕ ≤ 2π), ξ and η are defined in terms
of the distances r1 and r2 from the two ions to the point r (compare Fig. 2),

ξ =
(r1 + r2)

2f
1 ≤ ξ <∞ (5.1)

η =
(r1 − r2)

2f
− 1 ≤ η ≤ 1 . (5.2)
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Figure 4: Bonding (left) and anti-bonding (right) σ-states of the Hydrogen dimer at R =
1.4 Bohr. In the case of the bonding orbital an isosurface with density 0.9Å−3 is shown, for
the anti-bonding orbital the density is 0.15Å−3.

Figure 5: Left: bonding σ-state of O2 obtained by linear combination of two pz-orbitals
(R = 2.3 Bohr, density of isosurface 0.5Å−3). Right: bonding σ-state of BH obtained by
linear combination of the Hydrogen 1s- with the Boron pz-orbital (R = 2.3 Bohr, density of
isosurface 0.2Å−3).
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Figure 6: Left: bonding π-state of N2 (R = 2.0 Bohr, density of isosurface 0.3Å−3). Right:
bonding δ-state of Cr2 obtained by linear combination of two dxy-orbitals (R = 3.2 Bohr,
density of isosurface 0.02Å−3).

The relation of ξ and η to the cylindrical coordinates is given by

ξ =
1

2f

(
[ρ2 + (z + f)2]1/2 + [ρ2 + (z − f)2]1/2

)
(5.3)

η =
1

2f

(
[ρ2 + (z + f)2]1/2 − [ρ2 + (z − f)2]1/2

)
(5.4)

ρ = f
[
(ξ2 − 1)(1− η2)

]1/2
(5.5)

z = fξη (5.6)

d3r = f 3 (ξ2 − η2) dξdηdϕ . (5.7)

If one expresses the Laplacian in prolate spheroidal coordinates and uses the decomposition
(4.2), with φ̄jmσ understood as a function of ξ and η, the KS equation (3.25) assumes the
form {

t̂ξη + vσs (ξ, η)
}
φ̄jmσ(ξ, η) = εjmσ φ̄jmσ(ξ, η) (5.8)

with

t̂ξη =
−1

2f 2(ξ2 − η2)

[
∂ξ(ξ

2 − 1)∂ξ + ∂η(1− η2)∂η −
(ξ2 − η2)m2

(ξ2 − 1)(1− η2)

]
. (5.9)

Equation (5.8) demonstrates explicitly that the sign of m is irrelevant for the states φ̄jmσ.
φj,−|m|,σ and φj,|m|,σ only differ by the phase eimϕ in (4.2). The subsequent discussion is
therefore restricted to m ≥ 0.
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For the solution of the two-dimensional problem (5.8) the orbitals φ̄jmσ are expanded in
terms of analytical basis functions ψnlm,

φ̄jmσ(ξ, η) =
nmax∑
n=0

m+lmax∑
l=m

f jnlmσψnlm(ξ, η) . (5.10)

The upper bounds nmax and lmax indicate that this expansion has to be truncated in practice.
For ψnlm DIAMOL uses the non-orthogonal Hylleraas basis [7],

ψnlm(ξ, η) = (ξ2 − 1)m/2 e−(ξ−1)/(2a) Lmn

(
ξ − 1

a

)
Pm
l (η) , (5.11)

where the Lmn and Pm
l denote the generalized Laguerre polynomials and the associated

Legendre functions, respectively, and a is an adjustable basis parameter (for a discussion of
a see below). The Hylleraas basis is specific for two-center problems, but has the advantage
that the basis functions cover the bonding region between the ions very well. With this basis
the KS equation (5.8) can be recast as a generalized algebraic eigenvalue problem,

nmax∑
n′=0

m+lmax∑
l′=m

[
〈nlm|t̂ξη + vσs |n′l′m〉 − εjmσ〈nlm|n′l′m〉

]
f jn′l′mσ = 0 , (5.12)

which has to be solved for all m which are relevant.
While the overlap and kinetic energy matrix elements 〈nlm|n′l′m〉 and 〈nlm|t̂ξη|n′l′m〉,

respectively, can be evaluated analytically [8], the potential matrix elements

〈nlm|vσs |n′l′m〉 = f 3

∫ ∞
1

dξ

∫ 1

−1
dη (ξ2 − η2)ψnlm(ξ, η)vσs (ξ, η)ψn′l′m(ξ, η) (5.13)

have to be calculated numerically on a suitable grid of ξ, η-points. In DIAMOL the grid is
factorized in the form ξαηβ, with ξα and ηβ independently going through their respective
meshes. The η-mesh could be chosen to be equidistant without much loss of accuracy.
However, a minor accumulation of mesh points close to the nuclei is advantageous for larger
charges Zi and is therefore implemented in DIAMOL. The ξ-mesh has to reflect the fact that
the orbitals have their maxima and nodes close to the nuclei, but fall off exponentially for
large ξ. Therefore a transformation is used to concentrate more mesh points in the relevant
region.

Before the integral (5.13) can be performed, the components of vσs have to be determined.
Both the Hartree and the xc-potential require knowledge of the spin-density (3.28),

nσ(ξ, η) =
∞∑
m=0

∞∑
j=1

Θ(εNσ − εjmσ)
∣∣φ̄jmσ(ξ, η)

∣∣2 . (5.14)

If the LDA (3.34)–(3.36) is applied — as required for the simulation — insertion of (5.14)
into (3.31) directly provides vσxc on the ξ, η-grid.

Similary, one could insert (5.14) into Eq.(3.9) to obtain vH. However, the direct integra-
tion in Eq.(3.9) is less efficient than a calculation of vH by solution of the Poisson equation[

∂ξ(ξ
2 − 1)∂ξ + ∂η(η

2 − 1)∂η

]
vH(ξ, η) = −4πf 2(ξ2 − η2)n(ξ, η) . (5.15)
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In fact, utilizing a multipole expansion,

vH(ξ, η) =
1

2

lmax∑
l=0

(2l + 1)χl(ξ)Pl(η) , (5.16)

one arrives at an ordinary differential equation for the function χl,{
∂ξ(ξ

2 − 1)∂ξ − l(l + 1)
}
χl(ξ) = −4πf 2

∫ 1

−1
dη(ξ2 − η2)Pl(η)n(ξ, η) , (5.17)

which is solved by a standard shooting procedure on the same ξ-grid as used for integration.
As boundary conditions for this procedure one can use(

∂ξ −
l(l + 1)

2

)
χl(ξ)

∣∣∣∣
ξ=1

= −2πf 2

∫ 1

−1
dη(1− η2)Pl(η)n(1, η) (5.18)

at the lower end of the ξ-interval. For large ξ the right-hand side of Eq.(5.17) vanishes
exponentially due to the exponential decay of the density. Thus, up to exponentially decaying
corrections, χl is asymptotically proportional to the Legendre functions of second kind, Ql(ξ)
[9],

χl(ξ) =
ξ>>1

clQl(ξ) , (5.19)

as these satisfy the proper boundary condition,

χl(ξ) −→
ξ→∞

0 .

The coefficients cl can be evaluated by multiplying Eq.(5.17) by Pl(ξ) and subsequently
integrating over ξ,

cl = 4πf 2

∫ ∞
1

dξ

∫ 1

−1
dη(ξ2 − η2)Pl(ξ)Pl(η)n(ξ, η) . (5.20)

In this way c0 is directly obtained as

c0 = 2
N

f
.

As a result, the asymptotic boundary condition for the monopole term is

χ0(ξmax) =
N

f
ln

∣∣∣∣ξmax + 1

ξmax − 1

∣∣∣∣ , (5.21)

with ξmax being the maximum ξ-value of the mesh used. An explicit calculation of higher cl
can be avoided by resorting to the boundary condition

∂ξχl(ξ)

χl(ξ)

∣∣∣∣
ξ=ξmax

=
∂ξQl(ξ)

Ql(ξ)

∣∣∣∣
ξ=ξmax

. (5.22)

Once the matrix element (5.13) is completely known, the eigenvalue problem (5.12) can
be solved by use of a standard solver for matrix eigenvalue problems (DIAMOL uses a
LAPACK subroutine).
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It remains to specify the numerically most stable form of the total energy (3.32),

E0 =
∑
σ=↑,↓

∞∑
m=0

∞∑
j=1

Θ(εNσ − εjmσ) εjmσ + Exc[n↑, n↓]

−πf 3

∫ ∞
1

dξ

∫ 1

−1
dη (ξ2 − η2)n(ξ, η) vH(ξ, η)

−2πf 3

∫ ∞
1

dξ

∫ 1

−1
dη (ξ2 − η2)nσ(ξ, η) vσxc(ξ, η) , (5.23)

where the KS equation (5.8) has been used to express the kinetic energy in terms of the KS
eigenvalues.

For the actual numerical integration of the matrix elements (5.13) and the total energy
(5.23) DIAMOL relies on Gauss-Legendre quadrature (for both coordinates). If a suitable
transformation of the ξ-grid is applied (as discussed earlier), ξ, η-grids with 64×64 grid
points usually give decent results (128×128 grid points already yield very high accuracy).

Finally, some comments on the scaling parameter a of the basis (5.11) are required. a
determines the location of the extrema and zeros of the Lmn and, even more important, the
asymptotic behavior of the basis functions,

ψnlm(ξ, η) ∼
ξ>>1

ξn+m e−ξ/(2a) Pm
l (η) .

This behavior has to be compared with the exact asymptotic form of the solutions of Eq.(5.8),

φ̄jmσ(ξ, η) ∼
ξ>>1

1

ξ
e−f
√
−2εjmσ ξ

∞∑
l=0

cljmσ P
m
l (η) .

Obviously, the choice 1/a = 2f
√
−2ε ensures that the exponential decay of both functions is

identical. One should not underestimate, however, the importance of the power of ξ in front
of the exponential term: an a smaller than this choice required in order to compensate the
power law prefactors in the two functions. The default choice for a, provided by DIAMOL,
therefore aims at a balance between the various requirements on a.

6 Tasks

6.1 Setup of simulation

1. Download the package DIAMOL

http://th.physik.uni-frankfurt.de/~engel/teaching/comp-simu.tar.gz

and extract the tar-file. A directory comp-simu should be created in this process.
Enter into this directory.

2. Make yourself familiar with the environment: there is
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• the executable diamol.exe,

• an input file called modein.diamol, which provides all technical parameters for
diamol.exe which do not depend on the molecule to be calculated,

• a directory in, in which you find specific input files for several molecules,

• a shell script run.diamol, which can be used for a single calculation with diamol.exe

(it sets all relevant shell variables for IO and runs the program),

• a shell script run.diamol.list, which can be used for series of calculations with
diamol.exe (it starts run.diamol for all molecules listed in the file given as an
argument — an example is the file list — and, for given molecule, all interatomic
separations provided in the file run/list.molecule_name),

• a directory run with the example run/list.h_2 for the file of interatomic sepa-
rations required by run.diamol.list,

• an empty directory out to which run.diamol.list writes out results,

• a shell script morsefit and the accompanying executable morsefit.exe, which
allow you to fit some data set to the Morse potential (the most simple represen-
tation of covalent bonds),

• a directory reference_data, in which you find reference results for the energy
surface of the Hydrogen dimer.

3. Make yourself familiar with modein.diamol: this file contains a number of parameters
for which the default values in the file should be left untouched, i.e. NITMAX, LINMIX,
MODESA, RBOUND, MODENX, DENASY, HYBMIX, NSTART, MBAMP2, NX, EIGCUT, TOLDEG. The
parameters relevant for the simulation are:

• TOLPOT controls the accuracy of the self-consistent KS iteration. The value of
1.E-5 should be fine for your simulation.

• NU and NV define the number of grid points of the ξ- and η-grids, respectively.
The choice 64× 64 should be fine.

• MODEX and MODEXO determine which exchange functional is applied in (i) the
self-consistent KS iteration (MODEX) and (ii) an a posteriori evaluation with the
states obtained in (i) (MODEXO). Such an a posteriori evaluation is only per-
formed, if MODEXO differs from MODEX. MODEC and MODECO are analogous parame-
ters for the correlation functional. You should use the LDA for both components,
MODEX=MODEXO=MODEC=MODECO=11. MODEC=11 corresponds to the parameteriza-
tion of the LDA correlation functional of Ref. [3].

• MODEST determines in which way the program sets up the starting potential. For
MODEST=0 an internal guess is used, for MODEST=1 the program uses the output of a
previous run (when applied properly). For the first run for any interatomic sepa-
ration you have to use MODEST=0. When repeating calculations (e.g. for plotting),
you should use MODEST=1.

• MODEPR controls the amount of output generated. In particular, MODEPR=1 pro-
vides additional diagnostic printout (e.g. for tracking some failure) and MODEPR=21
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lets the program print out the density of state number NPLOT of spin SPLOT (UP
or DN) in a cubic box with corners (±XPLOT,±XPLOT,±XPLOT) in a format suitable
for plotting with the program Xcrysden.

4. Make yourself familiar with the specific input files for molecules such as in/h_2: they
contain

• a free comment on the molecule in the first line;

• all crucial parameters on the molecule in the second line, i.e.

– a string % which allows to set the interatomic separation R from outside of
the file via the stream editor sed,

– the nuclear charges ZNUC1 and ZNUC2 and the number of states NORBIT to be
calculated,

– the parameters MODEMU and MODEMD which are not required for your simulation
and should be left untouched;

• NORBIT lines providing the m quantum numbers and the occupations (1.0 and
1.0 for the present purpose) of all states to be calculated, spin-up on the left-hand
side and spin-dn on the right;

• the mixing ratio WEIGHT, which you should leave at the default value of 0.35;

• finally a line which determines the basis set, i.e.

– the basis parameter A (setting this input to 0.0 lets the program choose a
default value, which is fine for the present purpose),

– the highest index NBAMAX= nmax of the Laguerre polynomials in the basis
(5.10),

– the highest index LBAMAX= lmax of the associated Legendre functions in the
basis (5.10),

– the highest m quantum number MBAMAX for which (5.8) is solved,

– the highest multipole LHMAX included in the multipole expansion (5.16),

– the parameters NNODE and MNODE, which allow a fine-tuning of A (which is
irrelevant for your simulations) as well as the parameter LHSTEP, which can
be used to manipulate the multipole expansion (5.16) (which is also irrelevant
for your simulations).

5. Make yourself familiar with the shell scripts run.diamol, run.diamol.list and morsefit

• The handling of these shell scripts is explained in the scripts themselves.

6.2 Work plan

1. As a warmup and to ensure that you can correctly handle the program, calculate the
energy surface of H2. Suitable input files are found in the directory in, reference results
obtained with this input are provided in the directory reference_data.
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2. Calculate the ground and lowest excited state energy surface of CO (according to
experiment). An input file for the ground state can be found in the directory in.
Check the literature which many-electron state is the first excited state of CO, in
order to set up the input file.

3. Evaluate the spectroscopic constants for both energy surfaces with morsefit.

4. Determine the nature of the bonding molecular orbitals for both surfaces by plotting
them with Xcrysden (consult the tutor for the details of handling Xcrysden).

6.3 Report

In your report on the simulation you should in particular cover the following aspects:

1. Explain the physics behind the Born-Oppenheimer approximation. When does it break
down?

2. What are the spectroscopic constants of a diatomic molecule and how are they related
to the energy surface?

3. Which non-electronic excitations are possible in a diatomic molecule and how are they
related to the spectroscopic constants?

4. Which bond types exist for diatomic molecules?

5. Discuss all your results, such as the energy surfaces and the character of the bonding
orbitals for both states. Which error estimates for your results can you give?

There is no need to give an introduction to DFT in your report. The same applies to the
technical details of DIAMOL.
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