Frankfurt am Main	Kaiserslautern	Mainz
B1, B2, B4, B6, <mark>B13</mark> N	A7, A9, A12	A10, B5, B8
Materials Design <mark>- Sy</mark>	nthesis & Modelling	
A3, A8, B1, B2, B4, B6, B9, B11, B13N Cooperative Phenon	A5, A7, A9, A12, B3	A10, B5, B8, B12
A3, A8, B1, B2, B4, B6, B9, B11, B13N xcitations & Interac	A5, A7, A9, A12, B3	A10, B5, B8, B12

Transregio 49 Frankfurt / Kaiserslautern / Mainz

- critical phenomena
- non-equilibrium dynamics
- quantum magnetism
- phonon & polaron physics
- Mott transition
- superconductivity
- spin liquids

Solid state real materials

Theory

Experiment

A7

Bose-Einstein condensation in an ultra-hot gas of pumped magnons

magnon-phonon scattering → different thermalization rates and two magnon temperature

PRB 89, 184413 (2014)

Dynamics of magnon gases in spatially confined structures

APL **99**, 162501 (2011) APL **103**, 142415 (2013) APL **104**, 092418 (2014) APL **104**, 202408 (2014) APL **105**, 232409 (2014)

 \rightarrow toolbox for magnon BECs in micro-sized samples

Next:

Spatially confined magnon condensates and coherent magnon transportA7Coherent interactions & phase transitions in magnon gasesTheory of magnon-phonon interaction and non-equilibrium dynamicsA8

6

Dimensional phase transition from 1D to 3D

- study coupled 1D Bose gases \rightarrow 3D condensation
- extract phase diagram & comparison with theory

A9 B3

ultracold bosons in an optical lattice

- Transport in mixed dimensions Next:
 - superimpose lattice in longitudinal direction
 - \rightarrow coupled 1D Mott insulators

<u>Next</u>: Strongly correlated mass transport

non-equilibrium tunneling transport of atoms in a Mott insulator state

Quench dynamics of strongly correlated bosons in 2d, 3d

dynamical arrest

Transregio 49 Frankfurt / Kaiserslautern / Mainz 8

Dynamical arrest & quantum distillation

- non-adiabatic evolution during lattice ramp
- fermions Phys. Rev. Lett. 110, 075302 (2013).
- bosons, 1D Phys. Rev. A **110**, 013615 (2012).

A3 A5

Negative differential conductivity

 non-equilibirum initial condition

 current-voltage characteristics

Transregio 49 Frankfurt / Kaiserslautern / Mainz

Quantum Magnetism

A3

Tunable magnetic order

- bosonic magnetism on triangular lattice
- frustration

Phys. Rev. A 86, 043620 (2012)

Phonon and Polaron physics

Hybrid quantum simulator

 ultracold atoms in a dynamical lattice of trapped ions emulating electronic solids including phonons

Next:

- planar Paul trap with Yb⁺ crystal
- magnetic trap for Rb BEC
- tight confinement \rightarrow 1D atom-ion system

A10


```
Phys. Rev. Lett. 111 , 080501 (2013)
```


Phonon and Polaron physics

Polaron in solid-state physics

<u>Next</u>:

Bose-polaron of neutral impurities in a BEC

 simulate Fröhlich polaron with tunable impurity-BEC interactions

Frankfurt / Kaiserslautern / Mainz

- spectroscopy on weak and strongly coupled polarons
- lattice-polaron or quasi free-polaron dynamics

Transregio 49

A12

Phonon and Polaron physics

<u>Next</u>:

Theory of polarons & impurity dynamics in lattices and BECs

- Bloch oscillations, multiband physics
- detection of polaron by RF spectroscopy
- many-polaron phases
- relaxation dynamics of supersonic impurity in BEC

critical phenomena

- non-equilibrium dynamics
- **quantum magnetism**
- phonon & polaron physics
- Mott transition
- Superconductivity
- spin liquids

Model-based systems

Solid-state real materials

