Ultracold Bose Gases with variable interactions Herwig Ott (TU Kaiserslautern)

Physics to Explore

Achievements

Explore many-body phenomena and collective behaviour induced by Rydberg excitations

Investigate Rydberg physics on the millisecond time scale in ultra cold clouds

Molecular ion formation in ultracold Rydberg gases

Engineer long range interaction potentials between atoms on the millisecond time scale using **Rydberg dressing**

Mesoscopic Rydberg-blockaded ensembles in the superatom regime and beyond

Nature Phys, 11, 157 (2015)

Experimental Setup

Vacuum-immersed octopole electrodes for the creation of arbitrary electric and magnetic fields (MOT)

Sample size smaller than blockade radius

Antibunched ion emission indicates

Ongoing and future work

Implementing Rydberg technology

Spin physics with Rydberg s- and p-states

Prepare lattice system or superatom array Study excitation pattern for varying couplings

Rydberg dressing to molecular states in an optical lattice

Design many-particle interaction by quantum Zeno effect or by off-resonant coupling

Fast field ionization technique

Blue detuned lattice close to magic wavelength

Build two-photon excitation scheme via 6p state

Spatially resolved detection of Rydberbg atoms

 $H = \frac{1}{2} \sum J_{ij} (\sigma_i^+ \sigma_j^- + \sigma_j^- \sigma_i^+) + \sum \Delta_{ij} \sigma_i^z \sigma_j^z.$

A9 A5 A3 Collaboration between

bulk BEC

Time [us]

Transregional Collaborative Research Centre SFB/TR 49 Frankfurt / Kaiserslautern / Mainz