
Current-voltage characteristics of strongly correlated bosons

○ prepare atomic Mott insulator
○ shift trapping potential   
○ study subsequent dynamics

Collaboration between A9 A3

Dynamical arrest and quench dynamics

○ start from atomic Mott insulator
○ quench or slow change of interaction strength   
○ investigate relaxation dynamics to ground state

Collaboration between A9 A3

○ prepare non-equilibirum initial conditions
○ adopt procedure form NDC measurement
○ insulating plateaus should be visible in current-voltage relation

Collaboration between A9 A3

○ By exchanging the role of J|| and Jperb , we want to study the 
transport in coupled 1D systems 

Transport in mixed dimensions

Collaboration between A9 B3

Collaboration between A9 B3

Collaboration between A9 A5
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Working Principle
Interaction mechanism:
○ ionization:        40%
○ inelastic scattering:     55%
○ elastic scattering:             5%

Experimental Setup
Electron Column
○ beam diameter:  50 - 1000nm (FWHM)
○ beam energy:   6keV
○ depth of focus:  30µm

With the technique of Scanning Electron Microscopy
we detect and manipulate ultracold atoms with high spatial 
and temporal resolution and single atom sensitivity.

Bose-Einstein Condensate
○ evaporation time of 6 seconds
○  N = 80.000 atoms
○  F = 1 spinor condensate
○  ωr = 2π · 178Hz, ωa = 2π · 13Hz

Dipole Trap
○ CO2: 10W power, 10.6µm wavelength
○ trap depth: ωr = 2π • 2700Hz, ωa = 2π • 215Hz
○ beam waist 30µm

Physics Inside
○  correlation functions
○  low-dimensional systems
○  selective dissipative manipulation
○  tunneling dynamics in optical lattices
○  addressing and manipulating optical lattices

Measuring Configuration
○ N = 45k atoms in a BEC  →  ω = 2π · (13, 165, 165)Hz
○ transfer to 1D optical lattice  →  N = 500 - 1000 atoms per site
○ crossed laser beams at 90°:  λ = 774nm  →  d = 547nm
○ removal of atoms from the central site
 → observe filling status after variable time

Appearance negative differential conductivity

○ for low voltages (Δμ) the current increases linearly → Ohmic behavior
○ ater that the current bends over and decreases for increasing voltage
 → negative differential conductivity in a system of ultracold atoms!   
○ explanation: density dependent tunneling coupling: Jeff(Δμ)

High Resolution Microscopy of an Ultracold Quantum Gas
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Scanning electron microscopy

Negative differential conductivity

Ongoing and future work

Derivative of data
(here: J/ħ = 100Hz)

leads to current-voltage
characteristic

3D, 1D and in between

Measurement in 1D

○ 2D optical lattice: λ = 774nm, w = 630nm
○ change atom number to adjust interaction strength
○ interaction parameter in central tube: (0) = 1.5 / 0.5

    → fermionization of the bosonic particles!

        visible particle anti-bunching!

○  correlation time and amplitude are compared with calculations
 performed using the Time Evolving Block Decimation algorithm
 

Measuring 1D density distributions:
○ use electron beam for high resolution imaging
○ make Abel inversion to get averaged single-tube density-profiles
○ direct comparison with Yang-Yang theory for different temperatures

  → find good agreement between experiment and theory 

Dimensional phase transition
○ change 2D lattice height to vary interactions (from s = 30 to 0)
○ use Yang-Yang theory to extract condensation fraction out of density distributions

○ compare result with condesante fraction
 extracted from time-of-flight pictures

  → map out phase diagramm
    in s - μ  plane

○ get critical chemical potential at which
 the phase transition takes place

Local temporal correlation functions
Measurement in 3D

○ N = 250k atoms in a thermal cloud (inset: N = 100k in a BEC in F = 1)
○ extract correlation function from time resolved ion signal

    → thermal bosonic bunching effect!

○ theoretically predicted correlation time:     → good agreement!τc =
h̄

kBT

Mass transport of strongly 
correlated bosons

Jeff = J · 〈Ψf |Ψi〉

Lρ =
i

h̄
[ρ, Ĥ] + Γ(n̂ρn̂† − 1

2
n̂†n̂ρ− 1

2
n̂†n̂)

ρ̇(t) = Lρ(t)


