Investigation of spin systems via *ab initio* Quantum Monte Carlo and perturbation theory Kateryna Foyevtsova, Roser Valentí (Universität Frankfurt)

Ab initio Quantum Monte Carlo

General flow-chart of *ab initio* QMC

• Trial WF [defines the nodal structure (zeros) of the target GS WF $\Phi_0(R)$]:

Rayleigh-Schrödinger scheme

Starting point: Hubbard Hamiltonian

$$H^{\text{Hub}} = \sum_{\langle i,l \rangle \sigma} t_{pd} d^{+}_{i\sigma} p_{l\sigma} + \sum_{\langle l,n \rangle \sigma} t_{pp} p^{+}_{l\sigma} p_{n\sigma} + H_{1}$$
$$+ \sum_{i\sigma} \varepsilon_{d} d^{+}_{i\sigma} d_{i\sigma} + \sum_{l\sigma} (\varepsilon_{d} + \Delta) p^{+}_{l\sigma} p_{l\sigma} + F_{1} \delta_{l\sigma} \delta_{l\sigma} + F_{1} \delta_{l\sigma} \delta_{l\sigma}$$

 $\Psi_{T}(\vec{R}) = e^{J(\vec{R})} D^{\uparrow}(\vec{r}_{1}, \dots, \vec{r}_{N_{\uparrow}}) D^{\downarrow}(\vec{r}_{N_{\uparrow}+1}, \dots, \vec{r}_{N}), \quad \vec{R} = (\vec{r}_{1}, \dots, \vec{r}_{N})$

All electrons' coordinates

<u>Step 1</u>: Variational Monte Carlo (VMC)

$$E_0 \leq E(J) = \int |\Psi_{\tau}(\vec{R},J)|^2 \frac{H\Psi_{\tau}(\vec{R},J)}{\Psi_{\tau}(\vec{R},J)} d\vec{R}$$

 \checkmark Vary *J* to minimize *E*

- \checkmark Since $|\Psi_{\tau}(\vec{R},J)|^2$ acts as a probability distribution function, evaluate the integral by using Markov chain Monte Carlo
- **<u>Step 2</u>**: Diffusion Monte Carlo (DMC)

$$-\partial_{\tau} \Phi(\vec{R},\tau) = (H - E_{\Phi}) \Phi(\vec{R},\tau) \qquad \begin{array}{c} \text{Schrödinger equation in} \\ \text{imaginary time } \tau \end{array}$$

$$\Phi_{0}(\vec{R}) = \lim_{\tau \to \infty} \int G(\vec{R} \leftarrow \vec{R}_{0},\tau) \Psi_{\tau}(\vec{R}_{0}) d\vec{R}_{0} \qquad \begin{array}{c} \text{Integral form} \end{array}$$

$$\Phi_{0}(\vec{R}) = \lim_{\tau \to \infty} \int G(\vec{R} \leftarrow \vec{R}_{n},\Delta\tau) \dots G(\vec{R}_{1} \leftarrow \vec{R}_{0},\Delta\tau) \Psi_{\tau}(\vec{R}_{0}) d\vec{R}_{0} \dots d\vec{R}_{n}$$

• Definitions:

ТМ	Transition metal
\mathcal{E}_{d}	TM on-site energy
Δ	Charge-transfer energy
$d^+_{i\sigma}$, $p^+_{l\sigma}$	Creation operators of a hole on a TM site and a ligand site
t_{pd} , t_{pp}	Electron hopping amplitudes
U _d	On-site repulsion on a TM site
U_p	On-site repulsion on a ligand site
H_0, H_1	Unperturbed part and perturbation
ϕ_0, E_0	Ground state WF and energy of H_0
Ρ	Projector on ϕ_0
R	$=(1-P)/(E_{0}-H_{0})$

Effective Hamiltonian:

 $H_{eff} = E_0 P + PH_1 RH_1 P + PH_1 RH_1 RH_1 P$ + $PH_1RH_1RH_1RH_1P$ + $PH_1RH_1RH_1RH_1RH_1RH_1P$ + \cdots 4th order spin exchange 5th order spin exchange

- \checkmark Each application of G is interpreted as a stochastic process; propagation through G can be viewed as "diffusion" of Monte Carlo walkers (sequences of R)
- ✓ The Green's function

 $G(\vec{R} \leftarrow \vec{R}', \Delta \tau) = \langle R | e^{-\Delta \tau (H - E_{\tau})} | R' \rangle$

can be easily evaluated in the limit $\Delta \tau \rightarrow 0$; E_{τ} is some adjustable off-set energy

• **Fixed-node** approximation: To avoid the fermionic sign problem, the positive function

$$f(\vec{R},\tau) = \Phi(\vec{R},\tau) \Psi_{\tau}(\vec{R})$$

is being propagated instead:

- \checkmark Walkers are not allowed to cross nodes
- \checkmark The trial function serves as a guiding function
- \checkmark The GS energy E_0 is then calculated as

$$E_{0} = \lim_{\tau \to \infty} \frac{\int f(\vec{R}, \tau) \Psi_{\tau}^{-1}(\vec{R}) H \Psi_{\tau}(\vec{R}) d\vec{R}}{\int f(\vec{R}, \tau) d\vec{R}} = \lim_{\tau \to \infty} \frac{\int f(\vec{R}, \tau) E_{L}(\vec{R}) d\vec{R}}{\int f(\vec{R}, \tau) d\vec{R}} \approx \frac{1}{M} \sum_{m} E_{L}(\vec{R}_{m})$$

where $\{\vec{R}_m\}$ is the set of *M* samples of $f(\vec{R},\infty)$ resulting from the DMC run.

• Example from literature (C₂₀ isomers)

- Advantages
 - ✓ Efficient, expecially for evaluating interactions with phonons (avoids lengthy ab initio calculations)
 - ✓ Flexible (accuracy is controlled by the expansion order, number of parameters, *etc.*)
 - ✓ Model parameters are provided by *ab initio* calculations and Harrison's equations

Techniques/Codes and Staffing

Techniques/Codes

Ab initio DFT	Codes: Wien2k, FPLO, FLEUR, VA Quantum Espresso <u>Functionals</u> : LDA, LDA+U, hybrid (B3LYP, HSE)
Ab initio QMC	QMCPACK (VMC, DMC, Hartree-Fo
Pseudopotentials	OPIUM, VASP data base
Wannier functions	Wannier90 (maximally localized WF projected symmetry-preserving WF, FLEUR (RPA)
Quantum chemistry	ORCA, TURBOMOLE
Quantum chemistry Staffing of the project from aux N.N. (Ph.D. student) - performance of perturbation the - DFT calculations	ORCA, TURBOMOLE

Transregional Collaborative Research Centre SFB/TR 49 Frankfurt / Kaiserslautern / Mainz