Investigation of spin systems via *ab initio* Quantum Monte Carlo and perturbation theory Kateryna Foyevtsova, Roser Valentí (Universität Frankfurt)

Introduction: Spin systems

• Low-dimensional quantum spin systems offer a rich playground

$$H^{\text{Heis}} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

✓ Dimensionality interplaying with quantum effects

✓ Frustration effects

✓ Exotic collective excitations (spinons, triplons, BEC of magnons, ...)

✓ Tunability through chemical doping or pressure

b) Achievements: QMC studies of a 1D chain antiferromagnet

 Ca_2CuO_3

 \checkmark Ca₂CuO₃: The best representation of a 1D AFM chain \checkmark The largest J

 \checkmark The *U* value from LDA+U used as variational parameter \checkmark The best trial WF determined using the variational nature of the DMC energy

✓ A good starting point for further QMC studies of cuprates!

Ab initio approach: DFT and QMC

a) Achievements: DFT studies of copper halides

- Electronic structure of end members
- Structural relaxation
 - ✓ Equilibrium crystal sructure depends on the DFT approximation used

- Superexchange as a function of doping-induced inhomogeneities • Relates to STS measurements on the cuprates' surfaces • Results qualitatively depend on the complexity of the model \rightarrow importance of ligand atoms (oxygen)
- DFT used to parametrize the Hubbard model

b) Goals and work program

• By combining DFT/QMC and perturbation theory calculations, to design a code that efficiently and accurately calculates spin superexchange as a function of

✓ Doping and disorder

Mixed copper halides

Transregional Collaborative Research Centre SFB/TR 49 Frankfurt / Kaiserslautern / Mainz