

Thin film investigations on ferroelectric organic charge transfer systems

Michael Huth (Universität Frankfurt)

Introduction

B2

B11

B8

B2 B10

TMP-(F₄)TCNQ

Phys. Chem. Chem. Phys. **17**, 4118 (2015)

DFT •

тв —

0.85

- TMP-F₄TCNQ has virtually ideal geometrical D-A overlap
- Weak charge transfer ($\zeta \approx 0.1$)
- No indication for NI-transition
- Simulated uniaxial pressure along stacking axis (DFT):
 - Strong effect for TMP-TCNQ
 - No effect for TMP-F₄TCNQ

Comparison of charge distribution

Research questions

- Influence of anisotropic strain on NI-transition (thin films)?
- Coupling of ferroelectric polarization on dimerized spin state?
- Magnetic ground state of spin-chain under strain and exchange bias coupling to ferromagnetic nanostructures?
- Domain structure
 - Slow dynamics of charged domain walls (solitons)?
 - Domain size and orientation?

(eV) energy 8 ΧU R V ΓΥΤ 1.2 TMP-TCNQ TMP-F4TCNQ \hat{o} 1.1 = d/d 0.95 0.9 C a/a_0

[BEDT-TTF]DTF

- [BEDT-TTF]DTF crystallizes in two structures (**t**riclinic, **m**onclinic)
- Thin films grow mixed-phase
- Low-temperature XRD shows no evidence for structural transition in t-phase
- m-phase same space group as TTF-QCl₄ (N-phase) • Thin film capacitance shows anomaly @ 90-100 K \rightarrow NI-transition?

New mixed stack organic CTS

Achievements

- Band gap only 0.05 eV according to DFT
- Strong discrepancy in experimental and theoretical
- charge transfer (0.2 vs. 0.8)

TTF-QCl₄ thin film growth

Achievements

Overview of key properties

CTS	ζ		SG	\mathbf{PS}	$\sigma \left[Scm^{-1} ight]$	$E_A \left[eV \right]$	$\Delta E\left[eV\right]$	$E_g \left[eV \right]$
	exp.	th.						
TMP-TCNQ	0.14	0.13	C2/c~(15)	centrosym.	$< 10^{-11}$	-	0.5 - 0.7	0.35
$TMP-F_4TCNQ$	0.12	0.20	$\mathrm{P}\overline{1}$ (2)	centrosym.	$\approx 10^{-7}$	0.96	0.0 - 0.3	0.26
ET-DTF(m)	0.19	0.78	P21/n (14)	centrosym.	$\approx 10^{-5}$	0.34	0.5 – 0.7	0.047
ET-DTF(t)	pprox 0.21	0.91	P1(1)	polar	$\approx 10^{-7}$	0.30	0.5 - 0.7	0.026
TMP-DTF	0.14	0.08	$\mathrm{P}\bar{1}~(2)$	centrosym.	$\approx 10^{-5}$	0.06	0.7 - 1.0	0.7
$TTF-QCl_4(N)$	0.2	_	P21/n (14)	centrosym.	$\approx 10^{-5}$	0.13	≈ 0.3	≈ 0.06
$TTF-QCl_4(I)$	0.6	-	Pn(7)	polar	-	≈ 0.08	≈ 0.3	≈ 0.08

 ζ : charge transfer in units of e from IR-spectroscopy (exp.) and from ab initio DFT calculations (th.), SG: space group, PS: point symmetry, σ : room temperature conductivity, E_A : transport activation energy, ΔE : redox-potential of DA-pair, E_q : band gap from DFT calculations.

Transregional Collaborative Research Centre SFB/TR 49 Frankfurt / Kaiserslautern / Mainz