Collective phenomena in organic charge-transfer salts close to the Mott transition Michael Lang (Universität Frankfurt)

More detailed knowledge about P_0 required: check higher-quality single crystals

2) Effect of electron-phonon-coupling on critical behaviour:

• Narrow bands: $W \approx U_{eff} \sim 0.5 \text{ eV} \Rightarrow$ correlated π -electron system

• Frustrating magnetic dimer-dimer interactions $t/t \sim 0.7$ -1, depending on X cf. Kandpal *et al.*, PRL **103**, 067007 (09)

1 hole/dimer: half-filled conduction band

• afm ordered Mott insulator • superconductivity under pressure • S-shaped Mott transition line $T_{MI}(P)$

> Cf. Lefebvre et al., PRL 85, 5420 (00) e *et al.*, PRL **91**, 016401 (03) Fournier et al., PRL 90, 127002 (03) Kagawa et al., PRB 69, 064511 (04) S. Köhler, PhD Thesis (in preparation)

Top View

BEDT-TTF layer

Crossover from 2D Ising ($\kappa \approx 0.5$) to mean-field ($\kappa \approx 0.3$) criticality? cf. Zacharias et al., PRL 109, 097206 (12)

- 3) Critical behaviour of $EtMe_3P[Pd(dmit)_2]_2$
 - Nonmagnetic VBS ground state: stronger coupling to lattice expected

Charge degrees of freedom close to the Mott transition

a) Achievements

Discovery of first multiferroic charge-transfer salt κ -(BEDT-TTF)₂Cu[N(CN)₂]Cl

P. Lunkenheimer, J. Müller,, M. Lang, Nature Materials 11, 755 (12)	P. L
M. Lang et al., IEEE Transactions on Magnetics 6, 2700107 (14)	

_unkenheimer, **B11** Augsburg

Important new insights:

- Intra-dimer degrees of freedom active!
- Order-disorder type ferroelectric (5 out of 8 crystals)

B2

Mott transition and criticality

a) Achievements

Previous results on κ -(d8-BEDT-TTF)₂Cu[N(CN)₂]Br,

- Cf. M. de Souza et al., PRL 101, 216403 (08) L. Bartosch et al., PRL 104, 016403 (10)
- Large lattice effects arising from critial behaviour
- Application of a scaling Ansatz: Results consistent with 2D Ising universality class
- Sign change for $\alpha(T,P)$ at (P_0,T_0) predicted by scaling Ansatz!

 $\alpha(T,P)$ provides a most sensitive thermodynamic tool for probing Mott criticality!

Important new developments

*P***-dependent thermodynamic study of Mott criticality!** Use of novel technique: thermal expansion under pressure $\alpha(T,P)$

- $T_N \approx T_{FE}$ suggests close interrelation
- Studies at finite *B*: no spin-driven mechanism

- amount of charge disproportionation? cf. SedImeier et al., PRB 86, 245103 (13)
- Consistent with relaxor-type ferroelectricity in α -(BEDT-TTF)₂I₃

P. Lunkenheimer et al., arXiv: 1407.0339 P. Lunkenheimer, **B11** Augsburg

- b) Project goals and work programme
- Study the interrelation between T_N and T_{FE} under pressure
 - $\varepsilon'(T, P)$ in combination with $\chi(T, P)$
 - Dielectric measurements in preparation

Study of the coupling between spin, charge and lattice degrees of freedom 2)

Inelastic neutron scattering

International collaboration: Japan, Germany, France

Effects due to magnetic order vs. effects due to charge order 3)

Comparative study of several systems with different dimer topology

 α -(BEDT-TTF)₂I₃ β' -(BEDT-TTF)₂ICl₂ κ -(BEDT-TTF)₂Hg(SCN)₂Cl

Transregional Collaborative Research Centre SFB/TR 49 Frankfurt / Kaiserslautern / Mainz