

Interacting magnetic excitations in quantum spin systems - Thermodynamic investigations Bernd Wolf, Michael Lang (Universität Frankfurt)

New materials with extended range of field-induced "order"

• promising candidate tolan-bridged biradical: nitronyl nitroxide (synthesis in **B5**)

 \Rightarrow MEAM 154: $J_{intra}/k_B \sim 10 \text{ K}$

 \Rightarrow field-induced "ordered phase" is extended by a factor of nearly 4 (in temperature)

0,8

iii) Studying the critically enhanced magnetocaloric effect near a B-induced quantum-critical point

Achievements

Novel interaction-driven cooling processes

- $\chi(T,B)$ striking similarity to TK 91
- preliminary QMC simulations in B3

Goals and work programme

• characterization of field-induced "order" in biradicals by:

- \Rightarrow specific heat
- \Rightarrow if large single crystals are available: elastic constants and thermal expansion
- dimer-systems with different inter-dimer interactions by using modified bridging units such as CONH₂, OMe, NO₂ or Br

χ[(μ₈/f.u.)/T] .0 .6 .6 0,2 0,0 BU

- metalorganic coupled-dimer systems: modified (Ba,Sr)CuSi₂O₆
- influence of the structural transition on the field-induced ordering?
- Suppression of the structural transition at $T \approx 100$ K by Sr doping
 - \Rightarrow study the influence on the field-induced "ordering"
- theoretical support from B2 B3 B13N

in ultra cold quantum gases and solid state systems:

solid state systems:

- the accumulation of entropy around a magnetic field-induced quantum-critical point (QCP)
 - \Rightarrow enhanced magnetocaloric effect (MCE) expected
- proof of principle on an afm Heisenberg S = 1/2 chain (AFHC): a simple quantum-critical system

• extension: frustrated quantum magnets \Rightarrow 2D triangular antiferromagnets

Lang et al., Phys. Status Solidi B **250**, 457 (2013)

B [Tesla]

Wolf et al., Int. J. Mod. Phys. B 28, 1430017 (2014)

Wolf et al., Proc. Natl. Acad. Sci. USA **108**, 6862 (2011)

- diverging Grüneisen and sign change at the QCP
- superlinear cooling curves

• preliminary results on $\chi(T)$ and M(B)

Quantum paramagne OCP XY-antiferromagi $\mu_0 H(T)$ ebastian *et al.*, Nature 441, 617

Requested staff

Dr. Oleksandr Foyevtsov (Postdoc)

- thermal expansion and magnetostriction on spin-liquid-candidate systems such as the novel kagome-lattice systems, selected members of the $Cs_2CuCl_{4-x}Br_x$, spin-liquid candidates of the charge-transfer salts (B6)
- low-temperature ultrasonic measurements around their *B*-induced QCPs effects of spin-lattice interactions on the quantum-critical properties

Lars Postulka (Ph.D. Student)

- high-resolution susceptibility measurements on the field-induced ordered states
- development of a phase-sensitive detection technique for $\chi(T,B)$ in pulsed magnetic fields

Role within the SFB/TR 49

AFHC: ~ 25%; paramagnet: ~10%; **2d triangular afm:** ~ 50% !!

Goals and work programme

MCE in strongly frustrated triangular AFMs • determination of $\Gamma_{B}(T,B)$ (e.g. $Cs_2CuCl_2Br_2$) identification of QCPs

Close collaborations exist to the following projects

- \Rightarrow ab initio DFT- calculations for magnetic coupling constants
- \Rightarrow Quantum Monte Carlo simulations / analytical calculations for coupled spin-dimer systems
- \Rightarrow ab initio QMC for coupling constants; perturbation approach for spin phonon interaction
- B4 B5

B13ℕ

B2

B3

- \Rightarrow characterization of the various materials; feedback to the synthesis
- \Rightarrow microscopic model including spin-phonon interactions for addressing the elastic behaviour (ultrasonic attenuation and elastic constant) around the QCPs

A8

 \Rightarrow further extending the concept of "cooling through many-body interactions" to quantum gases

• investigating the cooling performence of the novel mixed systems

Transregional Collaborative Research Centre SFB/TR 49 Frankfurt / Kaiserslautern / Mainz