

Interacting magnetic excitations in quantum spin systems - Thermodynamic investigations

Bernd Wolf, Michael Lang (Universität Frankfurt)

Introduction

Exploring the collective behaviour of magnetic excitations in quantumspin systems, e.g., arrays of coupled (S = $\frac{1}{2}$) dimers in magnetic fields

Achievements

azurite: distorted frustrated diamond chain;

• natural mineral; model system for distorted frustrated diamond chain

Main objectives

- i) Spin-phonon interaction and quantum criticality
- ii) B-induced order in coupled-dimer systems
- iii) Magnetocaloric effect around a quantumcritical point

 $B_z \ge B_{c1}$

 $B_z = 0$

Magnetic and thermodynamic properties near a *B*-induced quantum-critical point

• effective $S = \frac{1}{2}$ model

 \Rightarrow explanation for experimental findings Jeschke et al., PRL 106, 217201 (2011)

- model description does not include magnetoelastic couplings
- coupling constant: $G = \partial J_2 / \partial \varepsilon_b \gg 1$
 - \Rightarrow anomalous magnetoelastic coupling indicating structural pecularities

Goals and work programme

• perturbation theory-based calculations \Rightarrow origin of the huge magnetoelastic coupling

Achievements

Cs₂CuCl₄: 2D triangular-lattice antiferromagnet

• coupling constants J = 4.35 KJ' = 0.34 JJ'', D = 0.05 J

• magnetic excitations dominant along **b** axis \Rightarrow dimensional reduction;

Cu(2)

description in terms of

Heisenberg chain

041108(R) (2015),

1 K

10

joint publication

novel microscopic description

• model not applicable close to

 $B(\mathbf{T})$

in the spin-liquid regime

Theory

• • • Experiment

the QCP

0.0000

-0.0002

-0.0004

-0.0006

-0.0008

 c_0

 Δc_{22}

of the magnetoelastic coupling

ii) Exploring the *B*-induced order in 2D coupled-dimer systems

Achievements

Cu-coordination polymer TK 91: 2D-coupled-dimer system

• TK 91 ($C_{36}H_{48}Cu_2F_6N_8O_{12}S_2$), characterized by $\chi(T,B)$ and C(T,B) \Rightarrow Field-induced "ordered state"

Tutsch et al., Nature Commun. 5, 5169 (2014)

- $Cs_2CuCl_{4-x}Br_x$: well-suited for investigating the interplay of
 - strong quantum fluctuations in reduced dimensions
 - the effects of geometrical frustration
 - spin-lattice interaction

Goals and work programme

B1 B4 B13_N A8

Novel mixed Cu-halides discovered in the SFB/TR 49: $Cs_2CuCl_3Br_1 / Cs_2CuCl_2Br_2$

- influence of different degrees of frustration
 - on the magnetoelastic coupling on the spin liquid properties
- experimental and theoretical investigations of the magnetoelastic behaviour near QCP

• broad maximum in specific heat at 120 mK is consistent with a 2D-Heisenberg model

joint publication

 \Rightarrow no long-range order for $T \ge 27$ mK

- *ab initio* calculations and quantum Monte Carlo simulations
 - \Rightarrow excitations reveal a distinctly 2D character
 - Berezinskii-Kosterlitz-Thouless scenario

occurrence of vortex \Rightarrow and antivortex excitations in the collectively-coupled dimer state

new kagome systems

based on novel design strategy: \Rightarrow variations in kagome stacking pattern and terms (such as DM) in the spin Hamiltonian

• investigation of the spin-liquid properties

• study the interplay between the tuning parameter and spin-liquid states

Jeschke *et al.*,arXiv 1412.4668 (2014) joint publication

• For 2D systems:

quantum Monte Carlo simulations predict an in-Tlinear change of magnetization at the critical fields \Rightarrow observed in *ac*-susceptibility measurements

 $\chi_B \propto M$

Straßel et al., arXiv: 1412.0266

χ at the critical fields for TK 91

Transregional Collaborative Research Centre SFB/TR 49 Frankfurt / Kaiserslautern / Mainz