Übungen zur Einführung in die Algebraische Geometrie I Blatt 3

1. Es sei K ein algebraisch abgeschlossener Körper. Zeigen Sie: Ist

$$P = (a_1, \ldots, a_n) \in \mathbb{A}^n(K),$$

so ist $I(P) = (X_1 - a_1, \dots, X_n - a_n)$ in $K[X_1, \dots, X_n]$. Benutzen Sie nicht die Tatsache, dass $(X_1 - a_1, \dots, X_n - a_n)$ ein maximales Ideal ist.

- 2. Es sei k ein Körper und $B = k[X_1, X_2]/(X_1^2 X_2^3 + X_1)$. Bestimmen Sie algebraisch unabhängige Elemente y_1, \ldots, y_m in B, so dass B ein endlich erzeugter $k[y_1, \ldots, y_m]$ -Modul ist.
- 3. Es sei A ein Ring und $f, g \in A$. Zeigen Sie:
 - i) $D(fg) = D(f) \cap D(g)$
 - ii) $D(f)=\emptyset$ genau dann, wenn $f\in\sqrt{(0)}$. Das Radikal $\sqrt{(0)}$ des Nullideals heißt auch Nilradikal von A.
 - iii) D(f) = Spec (A) genau dann, wenn f eine Einheit in A ist.
- 4. i) Zeigen Sie, dass für jeden Ring A die abgeschlossenen Punkte von $\operatorname{Spec}(A)$ genau die maximalen Ideale in A sind.
 - ii) Es sei K ein algebraisch abgeschlossener Körper und A und B endlich erzeugte K-Algebren. Zeigen Sie: Für jeden Homomorphismus $\varphi:A\to B$ von K-Algebren bildet die zugehörige Abbildung

$$f: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

abgeschlossene Punkte in abgeschlossene Punkte ab.