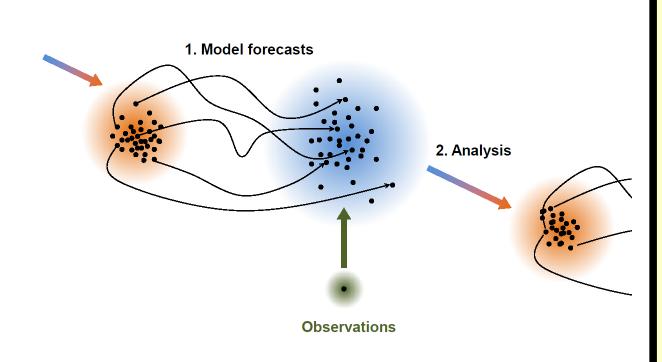


# The Ensemble Transform Particle Filter (ETPF)



J. Tödter (toedter@iau.uni-frankfurt.de)<sup>1</sup> and B. Ahrens<sup>1</sup>

Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt/Main, Germany

#### **Motivation**

The *Ensemble Transform Kalman Filter* (ETKF)<sup>[1]</sup> analysis step relies on the Gaussian assumption for prior density and observation. In contrast, the *Particle Filter* (PF)<sup>[2]</sup> performs an exact Bayesian analysis, but is highly unstable.

#### **Approach**

We replace the ETKF analysis step with a second-order exact deterministic update, derived from the PF.

Let  $X_f$  be the matrix containing the forecast (prior) ensemble, and  $X_f$  are its perturbations (deviations from ensemble mean).

# ETKF Analysis Step

## **Prior statistics**

Forecast mean and covariance

 $\overline{\mathbf{x}}_a^{\mathrm{KF}} = \overline{\mathbf{x}}_f + \mathbf{K} \left( \mathbf{y} - \overline{\mathcal{H}(\mathbf{x}_f)} \right)$ 

 $= (\mathbf{I}_n - \mathbf{K}\mathbf{H})\mathbf{P}_f$ 

 $\mathbf{T}\mathbf{T}^{T} = \left[ (m-1)\mathbf{I}_{k} + (\mathbf{H}\mathbf{X}_{f}')^{T}\mathbf{R}^{-1}(\mathbf{H}\mathbf{X}_{f}') \right]^{-1}$ 

 $\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_f^i = \frac{1}{m} \mathbf{X}_f \mathbf{1}$ 

#### **Targeted analysis statistics** Analysis mean and covariance from Kalman filter

# **Ensemble transformation**

Deterministic update of the complete ensemble

$$\mathbf{X}_a' = \sqrt{m-1}\mathbf{X}_f'\mathbf{T}.$$

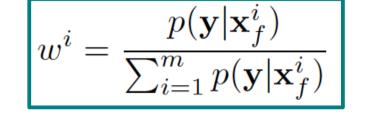
#### **Discussion**

- ▶ Very stable, no stochastic error as in the classical EnKF
- ▶State-of-the-art filter with many applications & extensions
- Implicit assumption of Gaussianity → not exact in nonlinear case

# PF Analysis Step

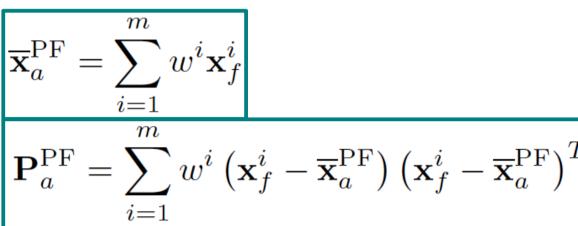
#### **Prior ensemble**

Weighting the prior ensemble with the observational likelihood



### **Analysis ensemble**

Only weights are modified by the standard PF



#### **Discussion**

- Non-parametric filter, exact analysis
- ▶ Severe tendency to filter collapse (divergence)

#### Other approaches

- ▶Resampling of the analysis ensemble → not sufficient
- ▶Propososal density<sup>[3]</sup> during forecast step  $\rightarrow$  more promising

# Ensemble Transform Particle Filter (ETPF) Analysis Step

# (1) Exact $2^{nd}$ order statistics $(\overline{x}, P_a)$

Based on prior ensemble and PF weights  $\mathbf{w} = (w_i)$ 

# (2) Deterministic update

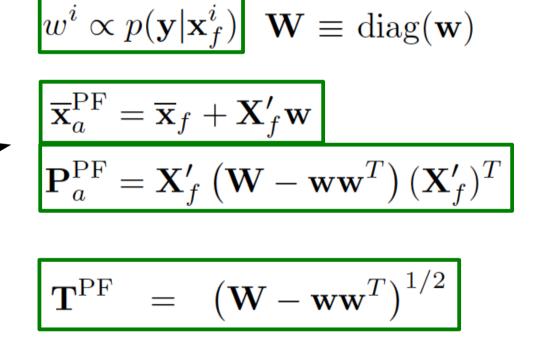
Generate analysis ensemble with this mean & covariance by transformation of the prior ensemble (with matrix **T**)

# (3) Random ensemble transformation

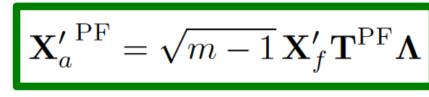
Additional transformation in ensemble space<sup>[4]</sup> Conserves 2<sup>nd</sup> order statistics *exactly* Produces a more Gaussian distribution → stabilizes filter

### (4) Localization

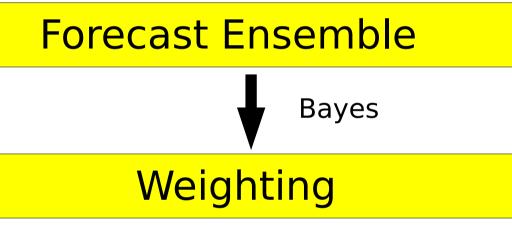
A local analysis can be performed as in the LETKF



Random matrix from 2<sup>nd</sup> order exact sampling [4]



**Transformations** in the ETPF:

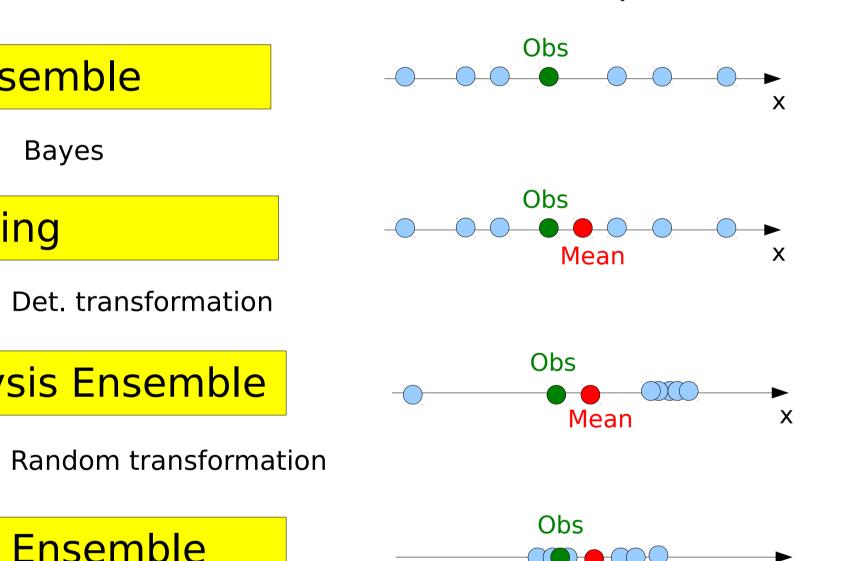


Temporary Analysis Ensemble

Det. transformation



Schematic visualization on a scalar example (m=6):



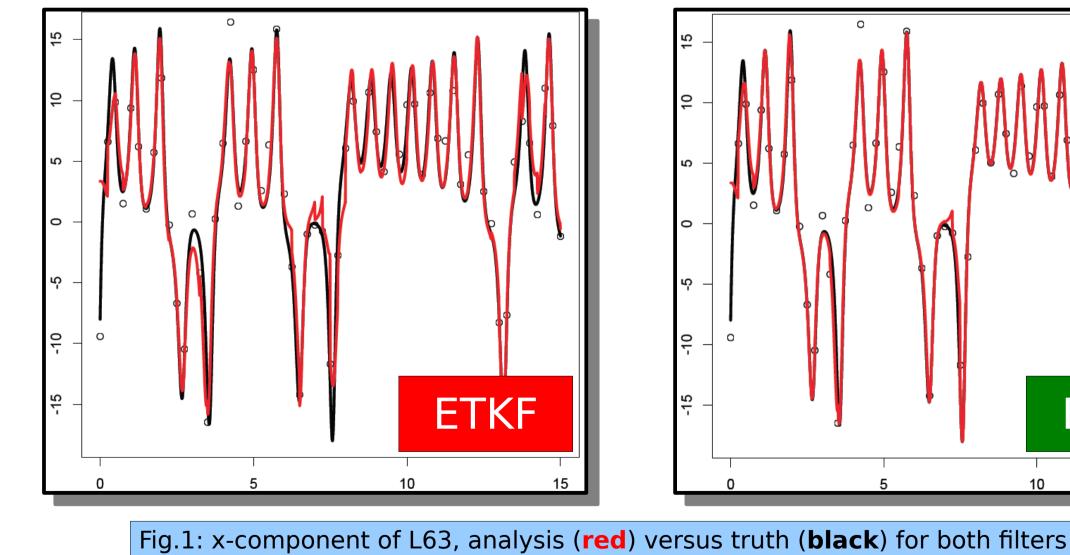
# Application to State Estimation in the Lorenz 63 System

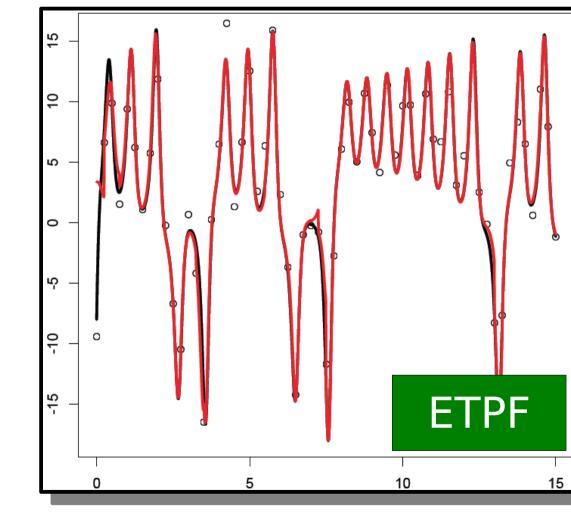
# Toy model

Low-dimensional, but highly chaotic: Can the filter reconstruct the model truth using only partial, imperfect observations?

# Setup

- $\rightarrow$ N ens = 100
- →ens init = climatology
- $\rightarrow$ obs density = dt\*25 (dt=0.01)
- $\rightarrow$ obs\_which = x,z
- →obs error =2





# Comparison

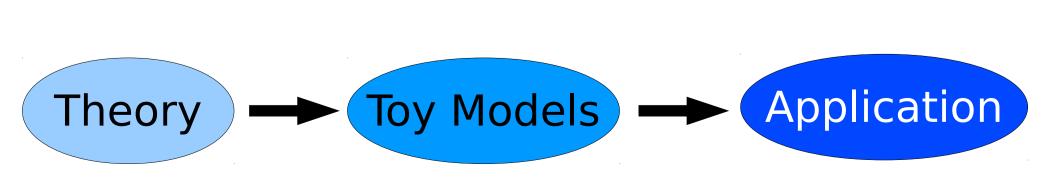
- ►Small error compared to ETKF
- ►Stable trajectory, no divergence
- ► Statistically consistent
- ►No underdispersion

|                                       | ETKF                            | ETPF                            |
|---------------------------------------|---------------------------------|---------------------------------|
| RMSE (of ens. mean)                   | 1.67                            | 0.69                            |
| CRPS (ensemble)                       | 1.17                            | 0.43                            |
| % of truth in 95% confidence interval | x: 80.5%, y: 81.1%,<br>z: 79.5% | x: 95.3%, y: 95.6%,<br>z: 93.8% |

# Summary and Outlook

## **Summary**

- →Derivation of a 2<sup>nd</sup> order exact deterministic filter
- →Motivating results with toy models
- →Localization possible as in the LETKF
- →Publication ongoing



# **Future Work**

- ► Further investigation of localization
- ►Behavior in higher-dimensional models
- ► Application to parameter estimation
- **\**...

## References

[1] Hunt, B. R et.al., 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126. [2] Gordon, N. et.al., 1993: Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEE Proceedings F, 140 (2), 107–113. [3] van Leeuwen, P. J. and M. Ades, 2013: Efficient fully non-linear data assimilation for geophysical fluid dynamics. Computers & Geosciences, 55, 16–27 [4] Nerger, L., T. Janjíc, J. Schröter, and W. Hiller, 2012: A unification of ensemble square root Kalman filters. Monthly Weather Review, 140, 2335–2345.

Presented at the International Symposium on Data Assimilation (Munich, February 2014)