

The Ensemble Transform Particle Filter (ETPF)

J. Tödter (toedter@iau.uni-frankfurt.de)¹ and B. Ahrens¹

Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt/Main, Germany

Motivation

The *Ensemble Transform Kalman Filter* (ETKF)^[1] analysis step relies on the Gaussian assumption for prior density and observation. In contrast, the *Particle Filter* (PF)^[2] performs an exact Bayesian analysis, but is highly unstable.

Approach

We replace the ETKF analysis step with a second-order exact deterministic update, derived from the PF.

Let X_f be the matrix containing the forecast (prior) ensemble, and X_f are its perturbations (deviations from ensemble mean).

ETKF Analysis Step

Prior statistics

Forecast mean and covariance

 $\overline{\mathbf{x}}_a^{\mathrm{KF}} = \overline{\mathbf{x}}_f + \mathbf{K} \left(\mathbf{y} - \overline{\mathcal{H}(\mathbf{x}_f)} \right)$

 $= (\mathbf{I}_n - \mathbf{K}\mathbf{H})\mathbf{P}_f$

 $\mathbf{T}\mathbf{T}^{T} = \left[(m-1)\mathbf{I}_{k} + (\mathbf{H}\mathbf{X}_{f}')^{T}\mathbf{R}^{-1}(\mathbf{H}\mathbf{X}_{f}') \right]^{-1}$

 $\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_f^i = \frac{1}{m} \mathbf{X}_f \mathbf{1}$

Targeted analysis statistics Analysis mean and covariance from Kalman filter

Ensemble transformation

Deterministic update of the complete ensemble

$$\mathbf{X}_a' = \sqrt{m-1}\mathbf{X}_f'\mathbf{T}.$$

Discussion

- ▶ Very stable, no stochastic error as in the classical EnKF
- ▶State-of-the-art filter with many applications & extensions
- Implicit assumption of Gaussianity → not exact in nonlinear case

PF Analysis Step

Prior ensemble

Weighting the prior ensemble with the observational likelihood

Analysis ensemble

Only weights are modified by the standard PF

Discussion

- Non-parametric filter, exact analysis
- ▶ Severe tendency to filter collapse (divergence)

Other approaches

- ▶Resampling of the analysis ensemble → not sufficient
- ▶Propososal density^[3] during forecast step \rightarrow more promising

Ensemble Transform Particle Filter (ETPF) Analysis Step

(1) Exact 2^{nd} order statistics (\overline{x}, P_a)

Based on prior ensemble and PF weights $\mathbf{w} = (w_i)$

(2) Deterministic update

Generate analysis ensemble with this mean & covariance by transformation of the prior ensemble (with matrix **T**)

(3) Random ensemble transformation

Additional transformation in ensemble space^[4] Conserves 2nd order statistics *exactly* Produces a more Gaussian distribution → stabilizes filter

(4) Localization

A local analysis can be performed as in the LETKF

Random matrix from 2nd order exact sampling [4]

Transformations in the ETPF:

Temporary Analysis Ensemble

Det. transformation

Schematic visualization on a scalar example (m=6):

Application to State Estimation in the Lorenz 63 System

Toy model

Low-dimensional, but highly chaotic: Can the filter reconstruct the model truth using only partial, imperfect observations?

Setup

- \rightarrow N ens = 100
- →ens init = climatology
- \rightarrow obs density = dt*25 (dt=0.01)
- \rightarrow obs_which = x,z
- →obs error =2

Comparison

- ►Small error compared to ETKF
- ►Stable trajectory, no divergence
- ► Statistically consistent
- ►No underdispersion

	ETKF	ETPF
RMSE (of ens. mean)	1.67	0.69
CRPS (ensemble)	1.17	0.43
% of truth in 95% confidence interval	x: 80.5%, y: 81.1%, z: 79.5%	x: 95.3%, y: 95.6%, z: 93.8%

Summary and Outlook

Summary

- →Derivation of a 2nd order exact deterministic filter
- →Motivating results with toy models
- →Localization possible as in the LETKF
- →Publication ongoing

Future Work

- ► Further investigation of localization
- ►Behavior in higher-dimensional models
- ► Application to parameter estimation
- ****...

References

[1] Hunt, B. R et.al., 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126. [2] Gordon, N. et.al., 1993: Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEE Proceedings F, 140 (2), 107–113. [3] van Leeuwen, P. J. and M. Ades, 2013: Efficient fully non-linear data assimilation for geophysical fluid dynamics. Computers & Geosciences, 55, 16–27 [4] Nerger, L., T. Janjíc, J. Schröter, and W. Hiller, 2012: A unification of ensemble square root Kalman filters. Monthly Weather Review, 140, 2335–2345.

Presented at the International Symposium on Data Assimilation (Munich, February 2014)