

Approaches to integrated Modelling

Maarten S. Krol Dept. Water Engineering & Management University of Twente Enschede, the Netherlands

University of Twente Campus

Overview

- Integration goals
- Approaches

Integration Goals

- Scrase & Sheate
- Brugnach & Pahl-Wostl
- Wesselink

Scrase & Sheate (2002)

Integrative Activities have specific goals Integrated environmental-economic modelling Integrated environmental management Integration among assessment tools Integration of assessment into governance Integrated information resources

Focus(contents, values, governance)Learning(technical, social, conceptual)

Changes (goal, delivery, setting)

Integration Goals

Scrase & Sheate (2002)

Integrative Activities have specific goals 70s : Environmental Impact Assessment 80s : Cost Benefit Analysis Goal EIA und CBA: changes in contents of policy paradigm 90s : Integrated Assessment Goal IA participatory policy making?

Brugnach & Pahl-Wostl (2005)

IA paradigm includes participation.

IA process goals und model attributes:

Prediction

Exploration

Communication

Learning

Systems characteristics Role of uncertainty Model properties Model validation

Brugnach & Pahl-Wostl (2005)

	System characteristics	Role of uncertainty	Model properties	Validation
Prediction	Abstractable	to be	Ctructured	Against observation
Exploration	EvolutiAssumption:trajecSystem is intrinsically			
Communi- cation	Systems complexity	com	olex	nsights
Learning	Reflexive system	to be addressed	Under construction	Facilitation of learning

Wesselink (2007)

Studied integration in real policy processes. (Flooding policy, spatial planning)

- Integration Expertise + Positions
- Argumentation + Negotiation

Wesselink (2007)

- Negotiation
 - Multi-interpretable goals help to merge positions
 - Local (non-generic) knowledge relevant
- Models relevant for
 - Introducing problem / solution options before
 - Legitimation afterwards

Goals integrated modelling

- Scientific:
- Knowledge on feedback processes
- Resulting systems behaviour
- Policy / decision support:
- Deliver boundary conditions to negotiations
- Moderate negotiations???
- Raise new issues, optimise solution design

Approaches

- Group Model Building
- Appropriate Modelling
- Agent Based Simulation

Group Model Building

- Systems theory approach mental models phenomenological Appropriate for learning and diagnosing, possibly preamble for negotiation Strategic political decision processes use scenario
- analyses and expert knowledge/views; models deliver boundary conditions
- Warning: 'Negotiated knowledge'

Approach for determining scales for Modelling (Booij, 2002)
Model results converge when refining resolution
No exact results required
Question: what scale?

- Goal: Choice spatio-temporal resolution for determining variables at river basin scale
- Criteria: reduction in Variance Method:
- Use correlation structure
- Integration using weights based on sensitivities

Sensitivities approximated using SCS approach

Variable	Appropriate variable scale (km)	Weight (-)
Precipitation	19.9	0.39
Elevation	0.1	0.26
Soil	5.3	0.21
Land use	3.3	0.14
Integrated	9.5	1.00

Maximum daily discharge / Meuse:

• 10 km / ±100 sub-basins

Approaches

Problem issues

- 'Appropriate scale' can be too small to be implemented → larger reductions in Variance
- Spatial correlations of Variables

- Approach to represent coexistence society and environment
- Taxonomy (Hare&Deadman, 2004)
- Cognition (no, fine tuning, strategies)
- Social interactions (no, local, global, group)
- Spatial explicit coupling society - environment

Example:

- Use of variably available resources \rightarrow Vulnerability, Semi-arid areas
- Reservoirs dampen variable availability
- Low availability dampens use?
 - Strategy to reduce usage
 - Effects of eg. prices
- Tool: Catchscape (CIRAD): Multi Agent Simulation

Upstream Intermediate Downstream

Approaches

Farmers rationality: 1: controlled irrigation schemes 2/3: reservoir flood plains 4/5: alluvial aquifer, access to river, local sources

Approaches

Disaggregated:

Description resource use decisions farmers

Aggregated:

- Use within sub-basin significantly important
- Reservoir yield $Q_{90:}$ 20%
- Effect variability in use fully dampened by reservoir

Conclusion

- Roles of models in policy making are overemphasized in integrated-modelling-relative to policy-analysis-literature
- Models aiming at learning / issue raising may be simple, bear major uncertainty
- Appropriate modelling considerations may help in defining scales / model complexity
- Agent-based simulation may help to deepen understanding of resource use