
An Introduction to Quiver Representations
Ray Maresca

1 Algebras, Quivers, Representations, and Categories

1.1 Algebras and Quivers

Question 1.1. Why do we study quivers?

To explain why quivers are a useful object to study from the perspective of algebra, we
will need to introduce a new algebraic object called an algebra. Algebras aren’t really that
new though because they are essentially just vector spaces where you can also multiply the
vectors. Throughout the course of these notes, we’re going to take k to be an algebraically
closed field. A field k is algebraically closed if when we set any polynomial in one variable
whose coefficients are in k equal to zero, all the solutions live in the field k. We can think of
k as the complex numbers C if we’re familiar with them. If we aren’t, we can for the most
part think of R until of course we need the algebraic closure property.

Wait! Why isn’t R algebraically closed?

Definition 1.1.1. A set of objects A with two operations (+, ·) is called an (associative)
algebra over k with unit 1A, or an (associative) unital k-algebra, if for all x, y, z ∈ A and
c, d ∈ k, we have the following properties:

1. x+ y ∈ A

2. x+ y = y + x

3. (x+ y) + z = x+ (y + z)

4. There is an element 0 such that x+0 =
0 + x = x

5. For each x there is an element −x such
that x+−x = 0

6. cx ∈ A

7. c(x+ y) = cx+ cy

8. (c+ d)x = cx+ dx

9. c(dx) = (cd)x

10. 1kx = x

11. x · y ∈ A

12. (x · y) · z = x · (y · z)

13. 1A · x = x · 1A = x

14. x · (y + z) = x · y + x · z

15. (x+ y) · z = x · z + y · z

16. c(x · y) = (cx) · y = x · (cy) = (x · y)c

Let’s unpack this definition a bit. The first 10 axioms should look familiar: they are the
axioms of a vector space over the field k. When we are talking about scalar multiplication in
the sense of vector spaces, we write the scalar c directly next to the element of the algebra x
as in cx. The new things here are axioms 11-16. When we’re multiplying two elements of
the algebra together, we write x · y. This multiplication is often not the same as the scalar
multiplication! In fact when we talk about quivers, they will be entirely different.

1

Wait! Is R2 an algebra? How about R3?

Exercise 1.1.1. For which values of n is Rn an algebra? For these value(s), find a field k and
show that Rn satisfies the axioms of an associative k-algebra with unit.

We know from linear algebra that a basis of a vector space V is a linearly independent
set of vectors that span V and that the dimension of V is the number of vectors in a basis. If
we’re rusty let’s dust off the old linear algebra book and refresh! Remember that algebras
are also vector spaces, so we can define the dimension of the algebra A as its dimension
as a vector space.

Example 1.1.1. Consider the set of n × n matrices such that all the entries below the
diagonal are 0. We call these matrices upper triangular. In the 3× 3 case they look like
this:  a11 a12 a13

0 a22 a23
0 0 a33

 .
We can add these together and get another upper triangular matrix. We can multiply them
and get an upper triangular matrix. In fact, the collection of these matrices forms a k-algebra
denoted by Un(k).

Exercise 1.1.2. Show that Un(k) is an associative k-algebra with unit.

We will denote by Mij ∈ Un(k), where i ≤ j, the matrix that has 1 in the ijth spot and
zeros everywhere else. So in the 3× 3 case, M12 is 0 1 0

0 0 0
0 0 0

 .
One can (and should) show that the collection of these Mij form a basis for Un(k) and in

general, there are n(n+1)
2

of these basis elements so the algebra is finite dimensional. Now
let’s make a multiplication table for the algebra Un(k). We start with one column and
one row where each row and column corresponds to a basis element for the algebra.

M11 M22 M33 M12 M23 M13

M11

M22

M33

M12

M23

M13

To find the matrix that needs to fill the first empty space, we multiply the matrix corresponding
to the row on the left by the matrix corresponding to the column on the right. Notice that
the order in which we multiply is very important because in general, multiplication in an
algebra is not commutative. So the top left entry is M11 ·M11 = M11. The entry immediately
to its right is M11 ·M22 = 0 where 0 is the zero matrix. Continuing in this way, we get the
full multiplication table (check it!):

2

M11 M22 M33 M12 M23 M13

M11 M11 0 0 M12 0 M13

M22 0 M22 0 0 M23 0
M33 0 0 M33 0 0 0
M12 0 M12 0 0 M13 0
M23 0 0 M23 0 0 0
M13 0 0 M13 0 0 0

Wait! Why is {M11,M22,M33,M12,M23,M13} a basis if M12 ·M23 = M13?

Example 1.1.2. In this example, let’s consider the collection of all polynomials of any degree
with coefficients in k, denoted by k[x]. Again, we can add these together and get another
polynomial with coefficients in k. Given two polynomials in k[x], for example ax + b and
cx+ d, we can multiply them to get acx2 + (bc+ ad)x+ bd, which is another polynomial with
coefficients in k[x].

Exercise 1.1.3. Show that k[x] is an associative unital k-algebra.

Now let’s think of a basis for the vector space. An arbitrary (random) polynomial in k[x]
is of the form axn + bxn−1 + · · ·+ yx+ z. To build this out of linear combinations of small
pieces, we need 1 to get the constant term z. We also need x to get the term yx. In fact,
we need xm for all m to build an arbitrary polynomial in k[x]. Therefore a basis would be
{1, x, x2, . . . }. This is an example of an infinite dimensional algebra.

Okay, enough with the abstract nonsense. Let’s see how we can relate this to quivers.

Definition 1.1.2. A quiver is a quadruple (Q0, Q1, s, t) where Q0 is a set of vertices, Q1 is
a set of arrows, s : Q1 → Q0 is a function that gives the starting point of each arrow, and
t : Q1 → Q0 is a function that gives the end point of each arrow.

That definition kind of stinks because it is really notation heavy. A quiver is nothing
more than a directed graph:

Example 1.1.3. Let Q be the quiver 1
α→ 2

β→ 3. Then the set of vertices is Q0 = {1, 2, 3},
the set of arrow is Q1 = {α, β}, the starting points are s(α) = 1, s(β) = 2, and the terminal
points are t(α) = 2, t(β) = 3.

Example 1.1.4. Let Q be the quiver

1 α

Then Q0 = {1}, Q1 = {α}, and s(α) = t(α) = 1.

Definition 1.1.3. A path in the quiver Q is a sequence of arrows α1α2 . . . αn such that for
each i, s(αi+1) = t(αi).

3

Let’s look back at the quiver in Example 1.1.3. Pretend like we are standing at vertex
1 and we need to walk to vertex 3. Then the path we need to take is first we walk along
α to get to vertex 2. Then since β starts where α ends, we can walk along β to get to
vertex 3. The corresponding path would be αβ. A word of caution: since at this point the
reader is so excited about quivers that they will likely go read other sources about them,
we should mention that some people would denote this path as βα. If we think of paths
like composing functions then this convention makes sense, but it is not the convention
that we will use. Now what if we start at vertex i and we don’t move? Ah yes, now we’re
doing philosophy and not math! Well, in this case we have followed the lazy path or the
trivial path, denoted by ei. Surprisingly, these paths are quite important as we will soon see!

We said in the beginning that in order to motivate why quivers, we needed to introduce
some abstract complicated notion of associative unital k-algebras whose definition relies on
16 different axioms. How on earth could this be connected to quivers whose definition is
three words: ‘a directed graph’? Well it turns out that to each quiver, we can associate an
associative unital algebra!

Definition 1.1.4. To each quiver Q = (Q0, Q1, s, t), we define the path algebra kQ as
the algebra whose k-vector space basis is the set of all paths in the quiver. We define
multiplication of two paths p and p′ by

p · p′ =

{
pp′ t(p) = s(p′)

0 otherwise

In the above definition, when we write the juxtaposition pp′, we mean the concatenation
of paths p and p′; that is, do path p first, then do path p′ immediately afterward. Also,
hidden in the notation here is the fact that we haven’t defined s(p). A path p = α1α2 . . . αn,
so by s(p) we mean s(α1) and t(p) = t(αn); that is, where the path starts and where the path
ends respectively. Let’s see some examples.

Example 1.1.5. Let Q be the quiver from Example 1.1.3. Then the basis for kQ is the
set of all paths {e1, e2, e3, α, β, αβ} (don’t forget the lazy paths!). Since we have a basis, an
arbitrary element of kQ will be of the form a1e1 + a2e2 + a3e3 + a4α+ a5β + a6αβ where the
ai ∈ k are scalars. These linear combinations don’t have a physical interpretation, they are
just formal objects that frankly, we don’t use very often unless we’re proving things. On the
other hand, multiplication has a nice physical interpretation. If we start at vertex 1, we can
stand there and do nothing, then follow α to vertex 2 and the resulting path is just α. This
corresponds to the product e1 · α = α. But if we replaced e1 with e2, then we can’t stand at
vertex 2 and do nothing, then follow α because α starts at vertex 1. This means e2 · α = 0.
On the other hand, we can follow α then stand at vertex 2 and do nothing, so α · e2 = α.
Notice that e2 · α 6= α · e2, so multiplication in these path algebras is rarely commutative.
Okay, let’s make the multiplication table the same way we did in Example 1.1.1. Looks
familiar doesn’t it?

4

e1 e2 e3 α β αβ
e1 e1 0 0 α 0 αβ
e2 0 e2 0 0 β 0
e3 0 0 e3 0 0 0
α 0 α 0 0 αβ 0
β 0 0 β 0 0 0
αβ 0 0 αβ 0 0 0

It turns out that the path algebra in Example 1.1.3 is ‘the same’ as the one in Example
1.1.1 as the reader may have already guessed since they have the exact same multiplication
table up to ‘renaming’. To make precise what we mean by ‘the same’, we need to introduce
another definition.

Definition 1.1.5. .

• A homomorphism between two k-algebras A1 and A2 is a function f : A1 → A2 such
that for any α, β ∈ A1 and c ∈ k we have the following:

1. f(α + β) = f(α) + f(β)

2. f(α · β) = f(α) · f(β)

3. f(cα) = cf(α)

• A homomorphism is called an isomorphism if it is bijective. Two algebras are
isomorphic if there exists an isomorphism between them. We denote this by A1

∼= A2.

Wait! Is the plus sign on the left hand side of equality 1 the same as the one on the right?
How about the · in equality 2?

Notice that a function between two vector spaces that satisfies properties 1 and 3 in the
definition of an algebra homomorphism is called a linear transformation! It turns out we
actually think of these things as morphisms in the ‘category of vector spaces’ which we will
define later. So really the only new thing here is the linearity of f with respect to the algebra
multiplication (property 2). The notion of two k-algebras being ‘the same’ is captured by the
notion of isomorphism and the act of ‘renaming’ is formalized by homomorphisms.

Proposition 1.1.1. The algebra U3(k) is isomorphic to kQ, the path algebra of the quiver
in Example 1.1.3.

Proof. We need to construct an isomorphism between the two algebras. Actually, since an
arbitrary element of kQ looks like a1e1 + a2e2 + a3e3 + a4α+ a5β + a6αβ, it suffices to decide
where the basis elements go then extend f to arbitrary elements of kQ linearly (ie force f to
satisfy properties 1-3 in Definition 1.1.5). We can do this by looking at the multiplication
table. Define f : kQ→ U3(k) by

e1 7→M11 α 7→M12

e2 7→M22 β 7→M23

e3 7→M33 αβ 7→M13

5

Check that this assignment makes sense! Since α · β = αβ, we need M12 ·M23 = M13 and
so on. After extending to the entire algebra linearly, we get a bijective algebra homomorphism,
and therefore an isomorphism. So the two algebras are actually the same after all!

Exercise 1.1.4. Show that Un(k) ∼= kQ for Q = 1→ 2→ · · · → n− 1→ n. (Hint: look back
at the proof for the case n = 3. Which matrix did the path from 1 to 2 go? How about the
path from 2 to 3 or 1 to 3?)

Proposition 1.1.2. Let Q be the one loop quiver from Example 1.1.4. Then as algebras,
kQ ∼= k[x] where k[x] is the polynomial algebra from Example 1.1.2.

Exercise 1.1.5. Prove the previous proposition by providing an explicit isomorphism.

Okay, so we said that to each quiver, we can associate a unital algebra called the path

algebra, but we haven’t discussed what the unit is! Let’s look back at Q = 1
α→ 2

β→ 3. Recall

that kQ
f∼= U3(k). We know the unit in U3(k) is the 3× 3 identity matrix

I3 =

 1 0 0
0 1 0
0 0 1


To figure out what the unit in kQ is, we just need to find the element in kQ that gets send
to I3 by f , or equivalently, we need to find f−1(I3).

Wait! Why is it true that an isomorphism of algebras send the unit to the unit?

To figure this out, we know that I3 = M11 +M22 +M33. Thus

f−1(I3) = f−1(M11 +M22 +M33)

= f−1(M11) + f−1(M22) + f−1(M33)(Why?)

= e1 + e2 + e3.

Therefore, the unit in kQ is the sum of the lazy paths! See, we said they would be
important.

Proposition 1.1.3. Let Q be a quiver and kQ its path algebra. Then 1 ∈ kQ is given by the

sum of the lazy paths
∑
i∈Q0

ei.

Proof. Suppose that |Q0| = n, so Q has n vertices and let {α1, α2, . . . , αm} be a basis for
kQ. Then an arbitrary element of a ∈ kQ is of the form c1α1 + c2α2 + · · ·+ cmαm for scalars
ci ∈ k. Notice that any path starts at one and only one vertex, so we can split this sum up
into the paths that start at vertex 1, those that start at vertex 2, up to those that start at n.
To do this, we write a = (c1α1 + c2α2 + · · · + ci1αi1) + · · · + (cin−1+1αin−1+1 + · · · + cmαm).

6

We need to first show that (e1 + e2 + · · ·+ en) · a = a. We have∑
i∈Q0

ei · a =
∑
i∈Q0

ei · (c1α1 + c2α2 + · · ·+ ci1αi1) + · · ·+ (cin−1+1αin−1+1 + · · ·+ cmαm)

= e1 · (c1α1 + c2α2 + · · ·+ ci1αi1) + · · ·+ en · (cin−1+1αin−1+1 + · · ·+ cmαm)

= (c1α1 + c2α2 + · · ·+ ci1αi1) + · · ·+ (cin−1+1αin−1+1 + · · ·+ cmαm)

= a

The second equality above holds because ei · p = 0 for any path p that does not start at i
and the third equality holds because ei · p = p for any path p that does start at i. A similar
argument (write it down!) shows that a ·

∑
i∈|Q0| ei = a, which proves the statement.

Okay great, we have shown that to each quiver, we get a unital associative algebra called
the path algebra. So quivers tell us about certain algebras, but do they tell us about all
algebras? Well, unfortunately the answer to this question is no, but it is almost yes. To
each ‘basic’ algebra, we can associate a quiver and each path algebra of a quiver is ‘basic’.
So essentially, studying quivers is the same thing as studying ‘basic’ associative unital k-
algebras... quite the mouthful. Even though not every algebra is ‘basic’, we can associate
a ‘basic’ algebra to every algebra, and this associated ‘basic’ algebra retains many of the
qualities of the algebra that people care about (the structure of the module category). So in
short, studying quivers and their ‘representations’ is the same thing as studying ‘modules
over basic associative unital algebras’. If none of that is meaningful to the reader, we can
forget about it as it won’t be important moving forward. It is just a way to show that quivers
are useful in the general study of representation theory of algebras.

1.2 Representations of Quivers and Morphisms Between Them

Question 1.2. What is the main object of study in this class?

Since this class is called quiver representations, we should probably define a quiver
representation.

Definition 1.2.1. .

• Let Q = (Q0, Q1, s, t) be a quiver with n vertices. A k-representation V = (Vi, φα) of
Q is an assignment of a k-vector space Vi for each i ∈ Q0 and a linear transformation
φα : Vi → Vj for each arrow α ∈ Q1 that starts at i and ends at j.

• A representation is called finite dimensional if and only if all the vector spaces are
finite dimensional.

• The dimension vector of a finite dimensional representation V is the vector dim(V) =
(dim(V1), dim(V2), . . . , dim(Vn)) that contains the dimension of the ith vector space in
the ith position.

• An element v of the representation V , is an n-tuple v = (v1, v2, . . . , vn) where vi ∈ Vi
for all i.

7

Another notation heavy definition, so let’s see some examples.

Example 1.2.1. Let Q = 1
α→ 2

β→ 3. Then to make a representation, let’s pick some finite
dimensional vector spaces for vertices 1,2, and 3, say k,k3,k2 respectively. Think of R,R3,
and R2 for now if that helps. Now we need to pick some linear transformations (only two
since there are only two arrows in Q). Define φα : k → k3 to be the linear transformation

whose standard matrix is given by

 1
0
0

. We can similarly pick φβ : k3 → k2 to have the

matrix

[
1 1 0
0 0 1

]
. Then this gives the following representation whose dimension vector is

(1, 3, 2):

V : k k3 k2

1
0
0

 [
1 1 0
0 0 1

]

Another representation, whose dimension vector is (1, 1, 0), is W : k 1→ k 0→ 0. The reader
should probably draw some more on their own now.

Example 1.2.2. Let’s consider a different quiver now. Let Q be the quiver

3
β

��
1 α // 2

γ

��
4

Then the following are examples of representations:

0
0

��
V : k 1 // k

1

��
k

k
1

��
W : 0 0 // k

1

��
k

8

Zooming Out 1. Recall from the previous section, we defined algebras, then defined the
homomorphisms between them. We’ve defined representations of quivers, and now it’s time to
define morphisms between them. In general, once we’ve defined a class of objects, like vector
spaces, algebras, or representations, the next step is to define the morphisms between them.
Loosely speaking, a class of objects along with a class of morphisms is a category.

Definition 1.2.2. Let V = (Vi, φα) and W = (Wj, ψα) be two representations of some quiver
Q with n vertices.

• A morphism from V to W , denoted by f = (f1, f2, . . . fn), is an n-tuple of linear
transformations fi : Vi → Wi such that ψβ ◦ fi = fi+1 ◦ φβ for each arrow β from i to j
in Q.

• A morphism is called injective (surjective) if fi is injective (surjective) for each i.

• A morphism is called an isomorphism if fi is a bijection for each i.

• Two representations V and W are called isomorphic, denoted V ∼= W , if there is an
isomorphism between them.

• The class of all representations isomorphic to V is called the isoclass of V .

The fact that ψβ ◦ fi = φβ ◦ fi+1 is often called a commutivity condition. To see why, it
will probably help to draw some pictures.

Example 1.2.3. Let Q be the quiver 1→ 2→ 3. Then we have two representations given
by V and W in Example 1.2.1. A morphism is given by the following:

k k3 k2

1
0
0

 [
1 1 0
0 0 1

]

k k 0

V :

W :
1 0

1
[
1 0 0

]
0

In this example, the morphism is given in blue by f = (1,
[
1 0 0

]
, 0). The commutivity

relations in Definition 1.2.2 can be seen by noticing that ‘all the boxes commute’. If we start
at the top left vertex above, go down then right; that must be the same thing as starting
at the top left vertex, going right then going down. Mathematically speaking, suppose we
have an element x ∈ k in the top left vertex. Then ψα(f1(x)) = ψα(x) = x. Similarly,

f2(φα(x)) = f2

(x0
0

) =
[
1 0 0

]
·

x0
0

 = x. Therefore ψα ◦ f1 = f2 ◦ φα, and the first box

commutes. One can (and should) show that the second box also commutes.

Wait! If we picked f2 =
[
0 1 0

]
, would this be a morphism?

9

Example 1.2.4. Now let Q be the quiver from Example 1.2.2. Then f = (1, 1, 0, 0) is a
morphism from V to W . It is is shown in blue and the reader should verify that the three
boxes do indeed commute.

k k

k

0
1

1

0

V :

k k

0

k
1

0

1

W :

1 1
0

0

Now that we have the notion of morphisms, we should study them more deeply. One can
ask questions like: How many are there? The answer to this is there can be infinitely many!
A follow up question may be: In the case when there are infinitely many, can we describe
all the morphisms using only a finite collection of them? This idea of building things out of
smaller pieces should be familiar: it is precisely the idea behind the basis of a vector space!

Proposition 1.2.1. Let V = (Vi, φα) and W = (Wi, ψα) be two k-representations of a quiver
Q. Then the collection of all morphisms from V to W , denoted Hom(V,W), is a k-vector
space.

Proof. In order to show that Hom(V,W) is a k vector space, we need to establish addition of
two morphisms and multiplication of a morphism by a scalar in k. Let f, g ∈ Hom(V,W),
so f, g : V → W , and v ∈ V be an element of the representation. We need to define the
sum of these two morphisms, and show that it is indeed a morphism from V to W . Define
f + g : V → W by f + g(v) = f(v) + g(v). At vertex i, we have (f + g)i(vi) = fi(vi) + gi(vi).
Since both fi(vi) and gi(vi) are elements of the vector space Wi, so is their sum since vector
spaces are closed under addition. Since i was arbitrary, this holds for all vertices i and hence
f(v)+g(v) is an element of W . Now we also need to show that f +g satisfies the commutivity
relation. Let α ∈ Q1 be an arrow from vertex i to vertex j. Then

(f + g)i+1(φα(vi)) = fi+1(φα(vi)) + gi+1(φα(vi)) (by definition)

= ψα(fi(vi)) + ψα(gi(vi)) (f and g satisfy commutivity relation)

= ψα((f + g)i(vi))

Again, since i was arbitrary, we have shown that f + g ◦ φα = ψα ◦ f + g. Therefore f + g is
a well defined morphism from V to W .

Now let c ∈ k be a scalar. Then define cf : V → W by v 7→ c(f(v)). Then one can (and
should) show that this is also a well-defined morphism from V to W .

Exercise 1.2.1. Finish the proof; that is, show that Hom(V,W) satisfies the remaining vector
space axioms.

10

Okay, let’s compute some Hom spaces.

Example 1.2.5. Let Q, V , and W be as in Example 1.2.4. We will compute Hom(V,W).
Any f ∈ Hom(V,W) will be of the form f = ([a], [b], [c], [d]) where the matrix with one
element [a] corresponds to multiplication by a:

k k

k

0
1

1

0

V :

k k

0

k
1

0

1

W :

[a]
[c]

[d]

[b]

The morphism f must satisfy the commutivity relations of each box. Since [c] is a map
from k to the zero vector space, [c] must be the zero map. Similarly, [d] must also be the zero
map. Let’s think about why this is. Consider the vector space V and a linear transformation
f : V → 0. Then in order for f to be a well-defined linear transformation, we need that
f(x) ∈ 0 for each x ∈ V ; that is, we require that f(x) = 0 for all x ∈ V . This forces f to be
the zero map.

Conversely, recall that two functions f and g are equal if they have the same domain
and codomain, and they agree on every element of the domain, that is f, g : X → Y and
f(x) = g(x) for all x ∈ X. Okay great! Now let f : 0 → V be any linear transformation.
Then we have that f(0) = 0 (why?). We also have the zero map 0 : 0 → V that sends
0 7→ 0(0) = 0. But this means that the linear transformation f has the same domain and
codomain as the zero map and f(x) = 0(x) for each x ∈ 0 (since there is only one, namely
x = 0). What we just showed is that all maps out of the zero space are equal to the zero
map. This makes the zero space both an initial and terminal object (and hence the zero
object) in the category of vector spaces... whatever that means.

Anyway, this means that f = ([a], [b], 0, 0). Let’s look now at the front left box. Let x ∈ k
and starting at the top left corner and moving right, we have x 7→ 1(x) 7→ bx. Now going
down first, we have x 7→ ax 7→ ax. In order for this box to commute, we must have ax = bx,
which occurs if and only if a = b. Therefore, we conclude that f = ([a], [a], 0, 0). (The reader
should check that the two boxes on the right do not tell us anything about [b]). Since any
f is of this form, we conclude that a basis for Hom(V,W) = {(1, 1, 0, 0)}, since multiplying
this vector by the scalar a will give us the general form for any morphism from V to W .
Therefore Hom(V,W) ∼= k is one dimensional.

Example 1.2.6. Let’s now take Q to be the Kronecker quiver 1 ⇒ 2 and consider two
representations V and W shown below. We will compute Hom(V,W).

11

k k2

[
1
0

]
[
0
1

]

k2 k3

1 0
0 1
0 0


0 0

1 0
0 1



[
a
b

] c d
e f
g h



V :

W :

In this figure, there are two commuting squares. We either follow the top arrow in both
representations, or we follow the bottom arrow in both.

Wait! Why aren’t there four squares?

Let x ∈ k. Starting in the top left and following the top arrows, we have that

x 7→
[
x
0

]
7→

cxex
gx

 .
Following the other side of the same square,

x 7→
[
ax
bx

]
7→

axbx
0

 .
Commutivity of the square forces a = c, b = e, and g = 0. Following the other square we get

x 7→
[

0
x

]
7→

dxfx
hx


and

x 7→
[
ax
bx

]
7→

 0
ax
bx

 .
By commutivity, we need d = 0, a = f , and b = h. Therefore, an arbitrary f ∈ Hom(V,W)
will be of the form

f =

([
a
b

]
,

a 0
b a
0 b

).
12

A basis for this Hom space would be

{([
1
0

]
,

1 0
0 1
0 0

),([0
1

]
,

0 0
1 0
0 1

)}

since a linear combination of a times the first plus b times the second will give us an arbitrary
morphism in the Hom space. Therefore Hom(V,W) ∼= k2 is two dimensional.

Now that we’re starting to get a handle on morphisms, let’s finish this section by formally
defining a category.

Zooming Out 2. Let C be a class of objects denoted by Ob(C), and a class of morphisms
between the objects denoted by HomC , such that each morphism f ∈ HomC has a unique
source X and target Y . (Think of objects as vertices and morphisms as arrows between
them)! In this case, f is a morphism from X to Y , written f : X → Y . The class of all
morphisms from X to Y is denoted by HomC (X, Y), and may not be a vector space like we’ve
seen so far.

Now C is called a category if we can compose morphisms ‘nicely’. More formally, by
‘nicely’, we mean that for every three objects X, Y, Z ∈ Ob(C), there is a binary operation
HomC (X, Y)× HomC (Y, Z)→ HomC (X,Z) called composition, sending (f, g) 7→ f ◦ g that
satisfies the following.

1. If f : W → X, g : X → Y, and h : Y → Z are morphisms, then the composition is
associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

2. For every object X there exists a morphism 1X ∈ HomC (X,X) called the identity
morphism on X such that for every f : X → Y and g : Z → X, we have

f ◦ 1X = f and 1X ◦ g = g.

Example 1.2.7. .

1. The category of finite-dimensional k-vector spaces and linear transformations between
them.

2. The category of finite-dimensional representations of a quiver Q, denoted by repQ, with
morphisms of representations.

3. A quiver! The vertices are the objects and the arrows are the morphisms (what is the
identity morphism on each vertex?).

Exercise 1.2.2. Prove that the categories in Example 1.2.7 are indeed categories.

13

1.3 Direct sums, Indecomposables, Subrepresentations, and Ker-
nels

Question 1.3. How can we use what we know about representations to build new ones?

Using what we know to build new mathematical objects is a common idea in mathematics.
In particular, just like with vector spaces, if we have two representations V and W of a quiver
Q, we can take their direct sum to get a new, in some sense bigger, representation. In the
world of finite-dimensional vector spaces, this is the same thing as taking the product (up to
isomorphism).

Definition 1.3.1. Let V = (Vi, φα) and W = (Wi, ψα) be two representations of Q. We
define the representation known as the direct sum of V and W as

V ⊕W =

(
Vi ⊕Wi,

[
φα 0
0 ψα

])
.

The notation here for the morphisms may be a little strange; it is written in block notation!
Recall that we can think of the direct sum of vector spaces Vi⊕Wi in two ways. One way, likely
the more familiar way, is as an external direct sum: Vi⊕Wi := {(vi, wi) : vi ∈ Vi and wi ∈ Wi}.
Another way to think about the direct sum is as an internal direct sum. We think of Vi
and Wi as two subspaces of Vi ⊕Wi whose intersection is only the zero vector and whose
external direct sum is all of Vi ⊕Wi. In this case, each element of Vi ⊕Wi can be uniquely
expressed as a sum of two vectors, one from Vi and one from Wi. In light of this informa-
tion, the internal direct sum is Vi ⊕Wi := {vi + wi : vi ∈ Vi and wi ∈ Wi}. It is not an
abuse of notation that we use the same symbol Vi⊕Wi for both the external and internal sums!

Exercise 1.3.1. Given two finite dimensional k-vector spaces, show that the internal direct
sum is isomorphic to the external direct sum.

As a result of Exercise 1.3.1, we can think of elements of the representation V ⊕ W
as either ordered pairs (v, w) or sums v + w where v is an element of the representation
V and w is an element of the representation W . Since V ⊕W is in fact a representation,
we can take its direct sum with the representation X. The resulting representation is
(V ⊕W)⊕X = V ⊕W ⊕X. In fact, for any m objects in repQ, say V1, V2, . . . , Vm, we can
define their direct sum recursively as

V1 ⊕ V2 ⊕ · · · ⊕ Vm = (V1 ⊕ V2 ⊕ · · · ⊕ Vm−1)⊕ Vm.

Example 1.3.1. Let’s look at the Kronecker quiver again 1 ⇒ 2. The direct sum of two
representations is depicted below.

14

k kV :
1

0

k k2

[
1
0

]
[
1
0

]W :

=

⊕

k ⊕ k k ⊕ k2

1 0
0 1
0 0


V ⊕W : 0 0

0 1
0 0


∼= k2 k3

1 0
0 1
0 0


0 0

0 1
0 0


Exercise 1.3.2. Construct the isomorphism in Example 1.3.1.

Now given two representations, we know how to build a new one by taking the direct
sum; but what about the other way around? If we are given a representation, can we always
decompose it into a direct sum? The answer to this is no:

Definition 1.3.2. A representation V 6= 0 of a quiver Q is called indecomposable if
whenever V ∼= W ⊕X, then either W = 0 or X = 0. If V is not indecomposable, we call it
decomposable.

Example 1.3.2. .

1. In Example 1.3.1, V is indecomposable, but W is not. It decomposes into two indecom-
posables:

k k2

[
1
0

]
[
1
0

]W : ∼= k k
1

1
⊕ 0 k

0

0

2. In Example 1.2.1, V is decomposable.

3. In Example 1.2.2, both V and W are indecomposable.

4. In Example 1.2.6, both V and W are indecomposable.

At this point, we may ask if any decomposable representation can decompose into the
sum of indecomposable representations. The answer to this is yes, and more!

15

Theorem 1.3.1. [Krull-Schmidt] Let Q be a quiver and V a representation. Then V ∼=
V1 ⊕ V2 ⊕ · · · ⊕ Vt where for each i, Vi ∈ repQ is unique up to reordering.

By unique we usually mean up to isomorphism in this context and to prove existence we
could use an inductive argument as in Schiffler’s book. For a proof of uniqueness, see the
references in Schiffler’s book.

If we think about what this theorem is saying, this idea isn’t entirely new! It says that
any object in repQ is ‘built out of’ indecomposables. We could in some sense think of
these indecomposables as basis elements and any representation as a linear combination of
indecomposables where all the coefficients are nonnegative integers and the addition is taking
direct sums. More importantly, to study repQ, it suffices to only look at the indecomposables!

Goal: Generally speaking, the goal of representation theory is to classify all isoclasses of
indecomposable representations and the morphisms between them.

One thing to notice is that this idea of objects breaking into indecomposable parts does
not always hold!

Zooming Out 3. A ‘sufficiently nice’ category C in which every object decomposes into a
finite direct sum of ‘nice’ objects is called a Krull-Schmidt category

Okay, back to building new representations from old ones. Remember the notion of
subspaces from linear algebra?

Definition 1.3.3. Let L, V , and W be three objects in repQ for some Q.

• We call L a subrepresentation of V if there exists an injective morphism i : L ↪→ V
(the hooked arrow signifies that the map is an injection).

• Two subrepresentations of V , i1 : L ↪→ V and i2 : W ↪→ V , are equal if and only if
i1(L) = i2(W).

An analogous definition is the following: L = (Li, φα|Li) is a subrepresentation of
V = (Vi, φα) if Li is a subvector space of Vi for each i and φα(Li) ⊂ Lj whenever α is
an arrow from i to j. The notation φα|Li signifies the restriction of φα to the subspace Li.

Wait! Why are the two definitions the same?

Example 1.3.3. Let Q be the quiver 1→ 2. Then the top representation is a subrepresen-
tation of the bottom representation:

0

0
��

0 // k
1
��

k 1 // k

16

What this definition is saying is that to compare subrepresentations, it doesn’t suffice to
look at just the representations. We need to look at how the representations are embedded
into the parent (bigger) representation. We can use this idea of subrepresentations to
build new representations out of morphisms! Recall from linear algebra that given a linear
transformation between two vector spaces f : V → W , we could study all the elements v ∈ V
such that f(v) = 0; ie, the elements that f sends to zero. We called this the kernel of f ,
denoted by kerf , which was equivalent to the nullspace of the standard matrix associated
to f . This nullspace was a sub-vector space of the domain of f , which is V . In a similar
way, given a morphism between two representations of Q, we want to define the kernel of the
morphism, which ends up being a subrepresentation of the domain.

Definition 1.3.4. Let V = (Vi, φα) and W = (Wi, ψα) be two representations of a quiver Q
and f : V → W be a a morphism from V to W . Then for each i, fi : Vi → Wi is a linear
transformation between vector spaces, so it has a kernel. Define Li = kerfi. Further, for
each α ∈ Q1, define ξα(x) = φα(x) for all x ∈ Li. We call ξα the restriction of φα to the
subspace Li. We call L = (Li, ξα) the kernel of the morphism f .

This seems like the ‘right’ definition, but to be sure, we need to verify that L is actually
a representation of Q.

Lemma 1.3.2. The kernel of f : V → W , denoted by L = (Li, ξα), is an object of repQ.

Proof. To be a finite-dimensional representation of Q, we need that Li is a finite-dimensional
vector space for each i, which we have, and also that ξα : Li → Lj is a linear transformation
from Li to Lj. We know that ξα is linear because φα is and ξα is just the restriction of φα.
What we don’t know is that ξα sends stuff in the kernel of fi to stuff in the kernel of fj;
that is, we don’t know that ξα(Li) ⊂ Lj. Again, since ξα is just the restriction of φα, this
is equivalent to asking whether φα sends stuff in the kernel of fi to stuff in the kernel of fj.
But remember that f is a morphism of representations! So we have the commutivity relation
ψα(fi(x)) = fj(φα(x)). Here’s a picture to keep in mind:

Li

fi
��

ξα=φα // Lj

fj
��

Wi
ψα //Wj

If x ∈ kerfi, then fi(x) = 0 by definition and ψα(fi(x)) = ψα(0) = 0 since ψα is a linear
transformation. By commutivity, we have that 0 = fj(φα(x)), which means that φα(x) ∈ kerfj
by definition. This allows us to conclude that if x ∈ kerfi, then φα(x) ∈ kerfj. Therefore
ξα sends stuff in the kernel of fi to stuff in the kernel of fj and L is a well-defined finite-
dimensional representation of Q.

Example 1.3.4. Recall the morphism f = (1,
[
1 0 0

]
, 0) from Example 1.2.3. Here it is

again:

17

k k3 k2

1
0
0

 [
1 1 0
0 0 1

]

k k 0

V :

W :
1 0

1
[
1 0 0

]
0

Let’s find the kernel of f by starting with the vector spaces. We have that f1 = 1 is the
identity map. Thus it is an injective linear transformation between two finite dimensional
vector spaces, so it has a trivial kernel (the null space of the corresponding matrix is only the
zero vector). Thus L1 = 0. Now to find the kernel of f2, we need to compute the nullspace of

the matrix
[
1 0 0

]
; which consists of vectors

xy
z

 ∈ k3 such that

0 =
[
1 0 0

]
·

xy
z

 = x.

From this we conclude x = 0, and so the kernel of f2 has basis{0
1
0

 ,
0

0
1

}.
Therefore the kernel of f2 is a two dimensional subspace of k3, so L2

∼= k2. Finally, L3 = kerf3.
Since f3 is the zero map, it sends everything to 0, so L3 = k2.

Now we need to find the maps: ξα =
[
1 0 0

] ∣∣
0
. Any map restricted to the zero vector

space is just the zero map, so ξα = 0. On the other hand, ξβ is more interesting. We need to
restrict

φβ =

[
1 1 0
0 0 1

]
to L2, which is a two dimensional subspace of k3. But here it is important to remember

which two dimensional subspace L2 is! It is the bottom two components of the vector

xy
z

.

To restrict φβ to the last to components, we need to keep the last two columns of the matrix

and discard the first column (why?). Therefore ξβ =

[
1 0
0 1

]
and kerf = L is isomorphic to

the following representation:

0 k2 k20

[
1 0
0 1

]
L :

Wait! Is L indecomposable?

18

1.4 Quotients and Cokernels

Question 1.4. How else can we use morphisms to produce new representations?

Before we answer this question, we need the notion of a quotient vector space. Intuitively,
a quotient of a vector space V by a subspace W , denoted V/W , is like taking V and identifying
all vectors in W as one vector. Although the reader may not see this after reading the formal
definition, we can think of quotient spaces as ‘gluing’ all the vectors in W together to make
one vector. One purpose of the quotient space is to study all the vectors in V that are not in
W , as we will see at the end of this section.

R2

R

Quotient

R2/R

R2/R

R

Definition 1.4.1. Let V be a k-vector space and W ⊂ V be a subspace. Then the quotient
of V by W , denoted by V/W , is the collection of sets of the form [v] = v+W = {v+w : w ∈
W}. These sets are called left cosets of W in V and they are equivalent to the analogously
defined right cosets of W in V because... why?

There are two analogies that coincide more with the definition, namely division of integers
and subtraction of exponents. For instance, when we divide two integers, we look at the
remainder. Sometimes, the remainder gives us the intuition behind the number of ‘different’
cosets in a quotient space. This mainly shows up in the context of ‘group theory’ and quotient
groups like Z/nZ, whatever those are. On the other hand, when we divide polynomials like
x5/x3, we subtract the exponents! In the cases that we will see, this is the intuition behind
the number of ‘different’ cosets. But there are infinitely many cosets since there are infinitely
many vectors v ∈ V ! So what do we mean by ‘different’?

Lemma 1.4.1. Let V be a k-vector space and W ⊂ V be a subspace. Then the quotient
V/W is a k-vector space.

Proof. To show that V/W is a vector space, we need to define addition, produce a 0 vector,
define scalar multiplication, and show that these operations satisfy the axioms of a k-vector
space, so let’s go.

Let v1 +W and v2 +W be two cosets in V/W . Define addition in the quotient space by
v1 +W +v2 +W = v1 +v2 +W . Now we need to check that this is well defined. First we have
v1 + v2 +W ∈ V/W since V is a vector space and v1 + v2 ∈ V . Now we need to show that
addition is independent of the element we pick from each coset. Pick an element from the coset
v1 +W , say v1 +w1, and another element v2 +w2 from the coset v2 +W where both w1 and w2

are in the subspace W . Then adding these normally we get v1+w1+v2+w2 = v1+v2+w1+w2.
Since W is a subspace, w1 + w2 ∈ W , so v1 + v2 + w1 + w2 ∈ v1 + v2 +W . Since w1 and w2

19

were arbitrary, we have shown that this holds for any elements of v1 + W and v2 + W , so
addition is independent of choice of representative and is therefore well-defined. In other
words, since W is closed under addition, it does not matter which elements of W we pick!

Now, let 0 ∈ V be the zero vector. Then [0] = 0 + W = {0 + w = w ∈ W} = W is
a candidate for the zero element in V/W . Actually, W = w + W for any w ∈ W (why?),
including zero! So therefore [w] = [0], or analogously, w +W = 0 +W = W for any w ∈ W .
Conversely, if [v] = [0], then {v + w : w ∈ W} = {w ∈ W}. In other words, every element of
{v + w : w ∈ W} is an element of W . Since 0 ∈ W , this implies that v + 0 ∈ W , so v ∈ W .
Therefore we conclude [v] = [0] if and only if v ∈ W . Here we have taken all of W and turned
it into one element, namely the zero vector!

Let c ∈ k and define scalar multiplication as c(v1 + W) = cv1 + W . Note that
cv1 +W ∈ V/W , so to finish checking that this is well defined, let v1 + w ∈ v1 +W . Then
c(v1 + w) = cv1 + cw. Since W is a vector space, cw ∈ W . Therefore c(v1 + w) ∈ cv1 +W .
Since w was arbitrary, this holds for every element in v1 +W and thus scalar multiplication
is well-defined.

Exercise 1.4.1. Show that these operations satisfy the remaining axioms of a k-vector space.

Lemma 1.4.2. Let [v1], [v2] ∈ V/W . Then [v1] = [v2] if and only if v1 − v2 ∈ W .

Proof. Suppose [v1] = [v2]. Then since V/W is a vector space, [v1] − [v2] = [0]. By the
definition of addition in the quotient space, [v1]−[v2] = v1+W−v2+W = v1−v2+W = [v1−v2].
Therefore [0] = [v1]− [v2] = [v1 − v2], which implies that v1 − v2 ∈ W . Conversely, suppose
v1 − v2 ∈ W . Then by the work done in the proof of the previous lemma, [0] = [v1 − v2] =
[v1]− [v2]. Adding [v2] to both sides gives [v2] = [v1] as desired.

Since the quotient of a vector space by a subspace is a vector space, it has a basis! By
‘different’ cosets, we mean linearly independent ones!

Example 1.4.1. . Consider V = R2 and the subspace W = span({(1, 0)}). Then we can take
the quotient: R2/span({(1, 0)}) = {v+span({(1, 0)})}. Let’s find a basis for this vector space.
Let [v] ∈ V/W . Then either v ∈ W or not. If it is, then [v] = [0] by the previous lemma, so
let’s suppose v /∈ W , hence v is a vector in R2 that is not in the span of the vector (1, 0).
This allows us to conclude that v must be of the form (a, b) where b is nonzero. The vector v
can be written as a linear combination v = a(1, 0) + b(0, 1) ∈ {(0, b) + span{(1, 0)}} = [(0, b)].
Since [v] was arbitrary, we conclude that V/W ⊂ span({(0, 1) + W}). Since {(0, 1) + W}
spans V/W and only has one element, which makes it minimal, it is a basis for V/W . We
conclude that V/W is a one-dimensional real vector space, so R2/span({(1, 0)}) ∼= R.

Example 1.4.2. Let V = R5 and W = span({(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)}) ∼= R3.
Then the quotient space V/W ∼= R2 has basis {[(0, 0, 0, 1, 0)], [(0, 0, 0, 0, 1)]}.

Exercise 1.4.2. Verify the statements in the previous example.

20

Remember when we first started learning about exponents? We said that ‘when we divide,
we subtract the exponents’. Well that is what’s going on here in terms of dimension! In the
previous example, the subtraction of 5-3 = 2 gives us the number of distinct cosets.

Proposition 1.4.3. Let V be an n-dimensional k-vector space and W an m-dimensional
subspace with m ≤ n. Then V/W ∼= kn−m is an n−m-dimensional k-vector space.

Exercise 1.4.3. Prove the previous proposition!

Okay, so now that we have the idea of a quotient vector space, let’s turn to that of a
quotient representation. Let Q be a quiver, M = (Mi, φα) a k-representation of Q, and
N = (Ni, φα) a subrepresentation of M .

Definition 1.4.2. We define the quotient of M by N to be the representation M/N =
(Mi/Ni, χα) where χα is the map between the quotient vector spaces induced by φα, namely,
χα(mi +Ni) = φα(mi) +Nj.

Notice, we need to show that this map is well defined! This means that the map is
independent of the representative we choose from each coset and that the map sends equal
cosets to equal cosets. First, take two elements from the same coset mi + Ni, say mi + ni
and mi + n′i. Then since N is a subrepresentation, φα sends Ni to Nj, so we get that
χα(mi + ni +Ni) = φα(mi) + φα(ni) +Nj by definition. Because φα(ni) ∈ Nj, we get that
χα(mi + ni +Ni) = φα(mi) + φα(ni) +Nj = φα(mi) +Nj (why?). Using the same argument,
χα(mi+n

′
i+Ni) = φα(mi)+φα(n′i)+Nj = φα(mi)+Nj . Therefore, the map χα is independent

of the choice of representative!

Now we must show that if we have two equal cosets, say m + Ni = m′ + Ni, that
χα(m + Ni) = χα(m′ + Ni). Since we assume that these two cosets are equal, by Lemma
1.4.2, we know that m −m′ ∈ Ni. We have χα(m + Ni −m′ + Ni) = χα(m −m′ + Ni) =
φα(m − m′) + Nj = φα(m) − φα(m′) + Nj. We know that φα(m − m′) ∈ Nj since N is
a subrepresentation of M . Moreover, since φα is linear, we conclude that φα(m − m′) =
φα(m)− φα(m′) ∈ Nj =⇒ φα(m) +Nj = φα(m′) +Nj again by Lemma 1.4.2, allowing us
to conclude that χα is well-defined.

An alternative definition is that the representation N is a quotient of M if there exists
a surjective morphism M � N . We will see why these two definitions are the same shortly
(it follows from the first isomorphism theorem!).

Example 1.4.3. Let Q be the quiver 1→ 2. Then the bottom representation is a quotient
of the top representation:

k
1
��

1 // k
0
��

k 0 // 0

We are now ready to obtain a new representation from a morphism! Remember from linear
algebra when we have a linear transformation between two vector spaces, say f : V → W ,

21

then the image of f , or the column space of the standard matrix of f , is a sub-vector space
of W . Therefore, we can take the quotient of W by the image of f to get W/imf , which we
call the cokernel of the linear transformation f . In a similar way, now let f : M → N be a
morphism between two representations M = (Mi, φα) and N = (Ni, ψα) of some quiver Q.
Then the image of f is the representation imf = (imfi = fi(Mi), ψα), which is by definition
a subrepresentation of N . Using this, we have the following definition.

Definition 1.4.3. Let f : M → N be a morphism between two representations M = (Mi, φα)
and N = (Ni, ψα) of some quiver Q. The cokernel of f is the representation given by N/imf .

Let’s unpack this definition a bit. The cokernel of the morphism f is N/imf =
(Ni/fi(Mi), χα) where χα is the map induced on the quotient by ψα, that is, χα(ni+fi(Mi)) =
ψα(ni) + fj(Mj) for each arrow α : i→ j. Let’s see an example.

Example 1.4.4. Define f = (0,
[
0 0 1

]
,
[
0 1

]
) as shown in blue below.

0 k k10

k k3 k2

M :

N : 1
0
0

 [
1 1 0
0 0 1

]
0

0
0
1

 [
0
1

]

Let’s compute imfi for each i. For i = 1, we have that f1 = 0, so imfi = 0. For i = 2,

f2 =

0
0
1

 ,
so imf2 is the subspace of k3 whose basis is{0

0
1

}.
Similarly, imf3 is the subspace of k2 whose basis is{[

0
1

]}
.

Now we compute the vector spaces of the cokernel of f . At vertex 1, we have the vector
space k/0 = k. At vertex 2, we have k3/imf2, which is the vector space with basis

{{1
0
0

+ imf2

}
,

{0
1
0

+ imf2

}}
∼= k2;

22

call this vector space V . Finally at vertex 3, we have k2/imf3, which is the vector space with
basis {{[

1
0

]
+ imf3

}}
∼= k;

call this vector space W . Therefore, the cokernel of f is given by the following representation:

k k2 k

1
0
0

+ V [
1 1

]
+ W

x

x0
0

+ V

xy
0

+ V x + y + W

∼= k k2 k

[
1
0

] [
1 1

]

We’re going to finish this section with one of my favorite theorems; let’s go back to vector
spaces for a few moments. Given a linear transformation f : V → W between two finite
dimensional vector spaces, then f splits the vector space V into two parts. Let v ∈ V be
a vector. Then either f sends v to zero, or it sends v to something in W that isn’t 0. So
in a way, the linear transformation splits the vector space V into the kernel of f (the stuff
that gets sent to zero), and the stuff that does not get sent to zero! Because the collection of
vectors in V that are not in the kernel of f does not form a subspace of V (why?), we can
realize the vectors that don’t get sent to zero as V/kerf ; that is, take V , glue together all
the vectors that f sends to zero, and make them zero.

But quotient spaces are somewhat more difficult to think about than normal vector spaces
because of cosets, so we really want to realize V/kerf as a regular vector space. Let’s look at
imf ⊂ W . The nontrivial vectors in the subspace imf are precisely the vectors in V that
don’t get sent to zero and the trivial vector in imf is precisely all the vectors in the kernel of
f ! So it seems like there should be some relation between the image of f and the quotient
f/kerf . This is precisely the statement of one of my favorite theorems! It was proven in
1927 by Emmy Noether for representations of quivers (really ‘modules’ which are just spicy
vector spaces) and some special cases were proven before this by Richard Dedekind. If the
reader is unfamiliar with Emmy Noether, they should look her up because she lived a truly
inspirational life in my opinion.

Theorem 1.4.4 (Noether’s First Isomorphism Theorem). Let f : V → W be a linear
transformation between vector spaces V and W . Then

imf ∼= V/kerf.

Proof. Consider the map ϕ : V/ker→ imf given by ϕ(v+ kerf) = f(v). Then this is a linear
transformation because f is. We first show it is well defined. Let [v] = [v′], so v−v′ ∈ kerf by
Lemma 1.4.2. We have ϕ([v]− [v′]) = f(v− v′) = f(v)− f(v′) since f is linear. On the other
hand, v − v′ ∈ kerf , so f(v − v′) = 0 = f(v)− f(v′). Thus f(v) = f(v′), so ϕ is well-defined.
Let’s show it is surjective: let y ∈ imf . Then by definition of imf , there exists some vector
x ∈ V such that f(x) = y. We have that ϕ(x+ kerf) = f(x) = y, so ϕ is surjective. Finally
to show injectivity, suppose that there are [x], [x′] ∈ V/kerf such that ϕ([x]) = ϕ([x′]). This

23

means f(x) = f(x′), so f(x)− f(x′) = 0 and by the linearity of f , f(x− x′) = 0. From this
we conclude that x − x′ ∈ kerf , allowing us to conclude [x] = [x′] again by Lemma 1.4.2.
Thus, ϕ is injective. Therefore, ϕ is a bijective linear transformation, hence an isomorphism,
between imf and V/kerf as desired.

The statement for representations of quivers is the following:

Theorem 1.4.5 (Noether’s First Isomorphism Theorem). Let f : M → N be a morphism
between two representations of Q called M and N . Then

imf ∼= M/kerf.

Exercise 1.4.4. Prove Theorem 1.4.5.

1.5 Exact Sequences and Abelian Categories

This section will be split into two parts that address the following questions:

Question 1.5. How can we further study representations using kernels and cokernels? Do
kernels and cokernels always exist in every category?

We begin with studying kernels and cokernels in the realm of quiver representations. To do
this, we first introduce possibly the most important notion in the study of representations of
quivers:

Definition 1.5.1. .

• A sequence of morphisms L
f→M

g→ N between three representations L,M, and N of
Q is called exact at M if imf = kerg.

• A sequence of morphisms

· · · →M1
f1→M2

f2→M3 → . . .

is called exact if it is exact at Mi for each i.

• A short exact sequence is an exact sequence of the form

0→ L
f→M

g→ N → 0

We can already prove something!

Lemma 1.5.1. The sequence of representations 0→ L
f→M

g→ N → 0 is short exact if and
only if f is injective, imf = kerg, and g is surjective.

24

Proof. Suppose 0 → L
f→ M

g→ N → 0 is short exact. Then by definition, im0 = kerf , so
kerf = 0 and f is injective. Similarly, since the sequence is exact, img = ker0. Since the zero
map sends everything to 0, ker0 = N . Therefore img = N and g is surjective. Finally it
follows from the definition of exactness that imf = kerg.

Conversely, suppose f is injective, imf = kerg, and g is surjective. Then since f is
injective, it has trivial kernel. Therefore kerf = 0 = im0, so the sequence is exact at L.
Similarly, since g is surjective, img = N = ker0. Thus the sequence is exact at N . Finally we
are given that the sequence is exact at M , so we have shown that the sequence is short exact
and therefore proven the statement.

Let’s see how this is related to kernels and cokernels:

Example 1.5.1. Consider the morphism f : M → N in repQ. Then we have an exact
sequence (not short exact)

0→ kerf
i→M

f→ N
p→ cokerf → 0.

Recall from Definition 1.3.3, a subrepresentation is a representation along with an injective
morphism. Here, kerf is a subrepresentation and i is the injective morphism. It is the
inclusion morphism. Similarly, recall the analogous definition of a quotient representation
from Definition 1.4.2. It was a representation equipped with a surjection onto it. Here, cokerf
is a quotient representation and p is the surjection onto it. We can also explicitly define
p as follows. Recall that cokerf = N/imf . Thus p : N → N/imf is the map that sends
n 7→ n+ imf = [n]. This is called the canonical quotient map.

Wait! Why is this sequence exact?

Example 1.5.2. Let’s shorten the exact sequence from the previous example. We have a
short exact sequence given by

0→ kerf
i→M

ϕ→M/kerf ∼= imf → 0.

In this sequence, i is again the inclusion of the subrepresentation kerf , and ϕ is the isomor-
phism the reader constructed in Exercise 1.4.4, which is analogous to ϕ from Theorem 1.4.4.

Wait! Why is this sequence short exact?

Okay, enough with the abstract examples. Let’s see some concrete exact sequences.

Example 1.5.3. Let Q be the quiver 1→ 2 and consider the following exact sequence three
representations written vertically as L, M , and N respectively.

25

0 //

0
��

0

0
��

0

0
��

0 // k
1
��

k
1
��

1 // k
0
��

k
0
��

0 // 0

0
��

0 0 // 0

The morphisms written in blue are f0 = (0, 0), f1 = (0, 1), f2 = (1, 0), and f3 = (0, 0). The
reader should check that imfi = kerfi+1 for each i. Since my fingers are tired from typing
all that notation, now would be a good time to introduce a new shorthand notation for the

representations L,M, and N . For the representation M = k 1→ k, we write 1
2
. There is one 1,

which means there is a one dimensional vector space at vertex 1. There is one 2, which means
there is a one dimensional vector space at vertex 2. The 1 is on top of the 2 because there is
an arrow in the quiver equipped with a nonzero map (the identity map in this case). The
notation for L is 2 and that for N is 1. We can’t always use this notation, but in the case in
which the isoclass of an indecomposable representation is determined by its dimension vector,
we can. We can rewrite the short exact sequence using the shorthand notation:

0→ 2
i→ 1

2

p→ 1→ 0

where i is the inclusion f1 and p is the projection f2. Using this notation, roughly speaking,
the subrepresentations are the ones given by the numbers on the bottom, and the quotient
representations are given by the stuff on the top (why?). Another short exact sequence is

0→ 2
f→ 1⊕ 2

g→ 1→ 0.

As we will soon see, this type of short exact sequence has a special name and moreover, we
can always make short exact sequences like this.

Wait! What are the maps?

Example 1.5.4. Let Q be the quiver from Example 1.2.2, given by

3
β

��
1 α // 2

γ

��
4

and consider the representations L = 2, M = 1 3
2

, and N = 1 ⊕ 3. The corresponding
representations are

26

0
0

��
L : 0 0 // k

0

��
0

k
1

��
M : k 1 // k

0

��
0

k
0

��
N : k 0 // 0

0

��
0

We have a short exact sequence given by

0→ 2→ 1 3

2
→ 1⊕ 3→ 0.

Wait! What are the maps?

Example 1.5.5. Consider the Kronecker quiver 1 ⇒ 2. Then we have a short exact sequence
given by

0→ 2→ 1

2 2
→M → 0

where M is the representation of Q with dimM = (1, 1), the top arrow is the zero map, and
the bottom arrow is the identity map.

Exercise 1.5.1. Write down the maps and indecomposable representations in Example 1.5.5.

To further study short exact sequences, we need some more definitions.

Definition 1.5.2. .

• A morphism between representations f : M → N is called a section if it has a left
inverse; that is, there exists a morphism h : N →M such that h ◦ f = 1M .

• A morphism between representations f : M → N is called a retraction if it has a
right inverse; that is, there exists a morphism h : N →M such that f ◦ h = 1N .

• A short exact sequence

0→ L
f→M

g→ N → 0

splits or is called split exact, if f is a section or g is a retraction.

We’ve already seen one!

Example 1.5.6. The final sequence in Example 1.5.3 splits. Define h : 1 ⊕ 2 → 2 by
h((x, y)) = y. Then h(f(x)) = h((0, x)) = x, so h ◦ f = 12.

It turns out, all of them are like this!

27

Proposition 1.5.2. A short exact sequence of representations

0→ L
f→M

g→ N → 0

is split exact if and only if
M ∼= L⊕N.

The reader at this point is probably incredibly curious about how this is proved. A proof
of this proposition can be found in Schiffler’s book; but be aware, it is three pages long. Okay,
time to zoom out. What if we aren’t playing with representations but instead with vector
spaces? Or groups, rings, topological spaces, smooth manifolds, or whatever category we
want? Can we build short exact sequences? Well remember, the definition of a short exact
sequence is dependent on the notion of kernels and cokernels! So to answer this question, we
really need to answer the question, do kernels and cokernels exist in every category? But
what the heck is a kernel in a category?

Zooming Out 4. Let C be a category and g : M → N a morphism between two objects M
and N . The kernel of g is an object L and a morphism f : L→M such that g ◦ f = 0. This
is good, this is what we want! This is how kernels behave in terms of representations of quivers!
But wait... there’s more! We also require that the kernel satisfies the following universal
property, namely, for any object X and morphism h : X →M such that g ◦h = 0, it factors
through L. That is, there a unique morphism u : X → L such that f ◦ g = h. Hang in there,
a picture might help.

X

h
��

u

~~
L

f //M
g // N

This picture says, give us h and we can find u (which is why it’s dotted) such that the
triangle commutes. Yay! Commuting diagrams!

Okay so we have category repQ, and a notion of a kernel of a morphism, Definition 1.3.4.
Seems natural to check that our definition agrees with the categorical definition!

Lemma 1.5.3. The kernel of a morphism of representations satisfies the universal property
given in Zooming Out 4.

Proof. Let g : M → N be a morphism in repQ and L = kerg
f
↪→ M be the kernel of

g where f is the inclusion. Then for each i ∈ Q0, we have that Li = kergi, so gi sends
everything in Li to zero. By construction then, we have gi ◦ fi = 0. Since this holds for all

i ∈ Q0, we have that g◦f = 0. It remains to show that L
f
↪→M satisfies the universal property.

To do this, consider the morphism X
h→M such that g ◦ h = 0. We need to construct a

morphism X
u→ L such that f ◦ u = h. To construct this, we need to give names to the maps

in our representations. Let L = (Li, φα), M = (Mi, ψα), and X = (Xi, ξα). Since g ◦ h = 0,
we have for any xi ∈ Xi, h(xi) ∈ kergi = Li. Thus Xi ⊂ Li, and we can define ui(xi) = hi(xi).

28

Since f is just the inclusion map, fi(ui(x)) = ui(x) = hi(x), so f ◦ u = h since this holds
for all i. The final thing we need to show is that u is in fact a morphism of representations
(makes the boxes commute, φα ◦ ui = ξα ◦ uj). But this follows from the fact that h is a
morphism of representations and ui = hi for each i! Since h is a morphism of representations,
for any arrow α : i→ j, ψα ◦ hi = ξα ◦ hj. Since φα is just the restriction of ψα, we have

φα ◦ ui = ψα ◦ hi = ξα ◦ hj = ξα ◦ uj.

Since we have the commutivity relation for each α, we have that the kernel of f does satisfy
the universal property and the lemma is proved.

Of course, we also have the dual statement for the cokernel:

Zooming Out 5. Whenever we see words like dual or co, we should be thinking about
‘flipping the arrows’. This idea will be formalized in the next section of these notes, but for
now, let C be a category and g : N → M a morphism between two objects M and N . The

cokernel of g is an object and morphism M
f→ L such that g ◦ f = 0 (just like for cokernels

of representations) and f satisfies the following universal property.

X

L

u

>>

M
f

oo

h

OO

Ng
oo

For any morphism h : M → X such that h ◦ g = 0, there exists a unique morphism
u : L→ X such that the triangle commutes: u ◦ f = h.

Exercise 1.5.2. Show that the cokernel of a morphism in repQ satisfies the categorical definition
in Zooming Out 5.

Now we finish the section by asking, do kernels and cokernels always exist in every
category? The answer is no, but when they do we have a name for the category.

Zooming Out 6. A category C is called an abelian k-category if the following hold.

1. C is a k-category; ie HomC (M,N) is a k-vector space for all M,N ∈ Ob(C) and the
composition of morphisms is bilinear ((f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g and f ◦ (g1 + g2) =
f ◦ g1 + f ◦ g2).

2. C is additive; ie C has direct sums, and a zero object 0 ∈ Ob(C) such that the identity
morphism 10 ∈ HomC (0, 0) is the zero morphism.

3. Each morphism f : M → N has a kernel i : K → M and a cokernel p : N → C such
that coker(i) ∼= ker(p).

We certainly know an abelian category called repQ! Condition 1 is satisfied by Proposition
1.2.1. We know how to take direct sums of objects, Definition 1.3.1, and we know that the
representation where all the vector spaces and all the morphisms are zero is the zero object,
so we have 2. Finally we have kernels, Definition 1.3.4, and cokernels, Definition 1.4.3.

29

Let f : M → N be a morphism of representations with kernel i : K → M and cokernel
p : N → C. By Example 1.5.1, we have an exact sequence

0→ K
i→M

f→ N
p→ C → 0.

Then we have

ker(p) = im(f) (by exactness)
∼= M/ker(f) (by the Noether isomorphism theorem, Theorem 1.4.5)

= M/im(i) (by exactness)

= coker(i) (by definition)

Therefore coker(i) ∼= ker(p), 3 is satisfied, and repQ is an abelian k-category.

1.6 (Hom) Functors

Question 1.6. Maps between objects in a category are called morphisms. Are there maps
between categories?

The answer to this question is yes! They are called functors and we will spend this section
defining them and exploring their properties. This section is pretty abstract, so throughout
the reader should keep a particular abelian k-category in mind, like repQ.

Zooming Out 7. Let C and D be two categories. A (covariant) functor F from C to
D is a mapping that satisfies the following:

1. For each X ∈ Ob(C), F assigns an object F (X) ∈ Ob(D). (F sends objects to objects)

2. For each f ∈ HomC (X, Y), F assigns a morphism F (f) : F (X)→ F (Y) ∈ HomD(F (X), F (Y))
(F sends morphisms to morphisms), such that:

• F (1X) = 1F (X) for all objects X ∈ Ob(C). (F sends the identity to the identity)

• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y , and g : Y → Z in C . (F
preserves composition of morphisms)

Of course, this is pretty abstract stuff, so let’s think of some examples.

Example 1.6.1. Let C be a category. Define the functor 1 from C to itself as follows.

1. On objects X ∈ Ob(C), 1(X) := X.

2. On morphisms f : X → Y , 1(f) = f .

Notice by definition, this functor sends the identity to the identity and preserves composition
of morphisms. This functor is called the identity functor.

Example 1.6.2. Recall from Example 1.2.7, quivers are categories! Consider the category
given by the quiver Q : 1

α→ 2. Then we can define a functor F as follows:

30

1. On objects: F (1) = 1, and F (2) = 2.

2. On morphisms: F (α) = 0, F (e1) = e1, and F (e2) = e2.

This functor preserves the identity by definition, and composition of morphisms (check!), so
it is a well-defined functor from Q to Q′ : 1 2.

Let’s define a new functor G on Q by:

1. On objects: G(1) = 1, and G(2) = 2.

2. On morphisms: G(α) = β, where s(β) = 2 and t(β) = 1, G(e1) = e1, and G(e2) = e2.

Then
G(e2 ◦ α) = G(α) = β = β ◦ e2 = G(α) ◦G(e2).

Also, we have
G(α ◦ e1) = G(α) = β = e1 ◦ β = G(e1) ◦G(α).

Therefore we don’t have that G preserves composition of morphisms, but actually reverses
composition (flips the arrows! See we said we would explain it)! The map G isn’t a functor
in the way we’ve defined it, which is why we call the functor defined in Zooming Out 7 a
covariant functor because it preserves composition of morphisms. The assignment G flips
all the compositions and is an example of a contravariant functor from Q to the quiver

Q̃ : 1
β← 2.

Zooming Out 8. Let C and D be two categories. A contravariant functor F from C
to D is a mapping that satisfies the following:

1. For each X ∈ Ob(C), F assigns an object F (X) ∈ Ob(D). (F sends objects to objects)

2. For each f ∈ HomC (X, Y), F assigns a morphism F (f) : F (Y)→ F (X) ∈ HomD(F (Y), F (X))
(F reverses the morphisms (arrows)), such that:

• F (1X) = 1F (X) for all objects X ∈ Ob(C). (F sends the identity to the identity)

• F (g ◦ f) = F (f) ◦ F (g) for all morphisms f : X → Y , and g : Y → Z in C . (F
reverses composition of morphisms)

We now turn our attention to a very important functor. Let C be a k-category as in
Zooming Out 6, so HomC (X, Y) is a k-vector space. Now lets think of Hom as a ‘function’ of
sorts, kind of like a derivative. By fixing X, we can look at the morphisms out of X, denoted
by Hom(X,−). We feed this assignment some object Y and what we get back is all the maps
from X to Y , denoted by Hom(X, Y). And moreover, Hom(X, Y) is a k-vector space! So
Hom(X,−) eats objects in the category C and returns a k-vector space, namely Hom(X, Y).
We have thus defined an assignment between the objects of C and the objects in the category
of k-vector spaces, denoted by Vectk. In order to make Hom(X,−) a functor, we need to
extend this assignment to morphisms, whence let f : Y → Z be a morphism between the
objects Y and Z in C . We need to define Hom(X,−)(f) = Hom(X, f) = f∗, ie we need
to use f to create a morphism between the vector spaces Hom(X, Y) and Hom(X,Z). A

31

morphism between these two vector spaces would eat a morphism from X to Y and give us a
morphism from X to Z. Let ϕ ∈ Hom(X, Y). Then ϕ takes us from X to Y . After we do
this, we could take f from Y to Z. The composition f ◦ϕ is then a map from X to Z; that is

f ◦ ϕ ∈ Hom(X,Z). We define Hom(X, f) as the morphism from Hom(X, Y)
f∗→ Hom(X,Z)

via ϕ 7→ f ◦ ϕ. This is called the pushforward of ϕ because it pushes it forward through Y
from being a map from X to Y , to a map from X to Z. A picture may help:

X

ϕ

��

f◦ϕ=f∗(ϕ)=Hom(X,f)(ϕ)

��
Y

f // Z

We call this the covariant Hom functor, which is a functor from any k-category C to
Vectk. In particular, since repQ is abelian by Zooming Out 6, we can apply the covariant
Hom functor to representations of quivers. Dually (we’re going to be flipping arrows!!!), by
looking at the maps into X, we can define the contravariant Hom functor Hom(−, X) as
follows. To objects Y of C , we assign the k-vector space Hom(Y,X). To define morphisms,
let f ∈ Hom(Y, Z), and ϕ ∈ Hom(Z,X). Then we define Hom(−, X)(f) = Hom(f,X) = f ∗

as the pullback of ϕ; that is, f ∗(ϕ) = ϕ ◦ f ∈ Hom(Y,X). Intuitively, we are pulling ϕ back
from starting at Z to starting at Y :

X

Y
f //

Hom(f,X)(ϕ)=f∗(ϕ)=ϕ◦f

??

Z

ϕ

OO

Exercise 1.6.1. Show that the covariant and contravariant Hom functors are actually functors.

Okay, so given objects and morphisms in a k-category C , we have a way to get objects
and morphisms in the category Vectk. This means if we have a sequence of objects and
morphisms in the category, we should get a sequence of objects and morphisms in Vectk. If
the category C also has kernels and cokernels, we can extend the definition of exact sequences,
Definition 1.5.1, to any abelian k-category (Do it!). It might be natural to wonder whether
the Hom functor sends exact sequences in C to exact sequences in Vectk.

Wait! Why do we have exact sequences in Vectk? Is Vectk abelian as in Zooming Out 6?

Theorem 1.6.1. Let 0 → L
f→ M

g→ N be a sequence of objects and morphisms in an
abelian k-category C . Then it is exact if and only if

0→ Hom(X,L)
f∗→ Hom(X,M)

g∗→ Hom(X,N)

is exact for every X ∈ Ob(C).

32

Proof. This proof is quite challenging and may take a while to absorb. The reader should
have a pencil in hand, jotting down their ideas while reading through this. It will probably
take several reads to understand, so let’s be patient and move through slowly!

We begin by proving the ‘forward direction’ which starts with assuming that

0→ L
f→M

g→ N

is exact, so kerf = 0 and imf = kerg. We wish to show that for any X ∈ Ob(C), the
sequence

0→ Hom(X,L)
f∗→ Hom(X,M)

g∗→ Hom(X,N)

is exact. This means we must show: 1. kerf∗ = 0, 2. imf∗ ⊂ kerg∗, and 3. kerg∗ ⊂ imf∗.

1. To show kerf∗ = 0, we must select an arbitrary element in the kernel of f∗ and show it is
the zero morphism. Whence let ϕ ∈ Hom(X,L) be in the kernel of f∗; that is, f ◦ϕ = 0,
and we will show that ϕ is the zero morphism. Thus for any x ∈ X, f(ϕ(x)) = 0,
which means that ϕ(x) ∈ kerf for all x by definition. But since we are assuming that
kerf = 0, this means that ϕ(x) = 0 for all x, which allows us to conclude that ϕ = 0.
Therefore kerf∗ = 0.

2. To show imf∗ ⊂ kerg∗, we must select an arbitrary element in imf∗ and show that it
also lives in kerg∗. So let ϕ ∈ Hom(X,M) be in the image of f∗. Then by definition of
image, there is some morphism ψ ∈ Hom(X,L) that f∗ maps to ϕ; that is, f ◦ ψ = ϕ.
This means that for all x ∈ X, f(ψ(x)) = ϕ(x), so ϕ(x) ∈ imf for all x by definition.
But we’re assuming that imf = kerg! So that means that for all x, ϕ(x) ∈ kerg which
means that f(ψ(x)) ∈ kerg for all x since f(ψ(x)) = ϕ(x). Therefore, since this holds
for all x, ϕ = f ◦ ψ ∈ kerg, which shows that imf∗ ⊂ kerg∗.

3. To show kerg∗ ⊂ imf∗, we must select an arbitrary element in kerg∗ and show it also
lives in imf∗. So let ϕ ∈ Hom(X,M) live in kerg∗, which means that g ◦ ϕ = 0 by
definition. But recall the universal property of the kernel discussed in Zooming Out 4!
Since g ◦ ϕ = 0, it must factor through the kernel of g, which we assume to be equal to
the image of f :

0 // imf = kerg i //M
g // N

X
ψ

ee
ϕ

OO

0=g◦ϕ

>>

In this diagram, the existence of the map ψ such that i ◦ ψ = ϕ follows from the
universal property of the kernel where i is the inclusion of the kernel of g into M . So for
all x ∈ X, ψ(x) ∈ imf , which allows us to conclude that i ◦ ψ ∈ imf∗. Since i ◦ ψ = ϕ,
we have shown that ϕ ∈ imf∗.

33

Points 1., 2., and 3. combined show that kerf∗ = 0 and imf∗ = kerg∗, establishing the
exactness of the sequence

0→ Hom(X,L)
f∗→ Hom(X,M)

g∗→ Hom(X,N).

Conversely, let’s prove the ‘reverse direction’ and suppose that

0→ Hom(X,L)
f∗→ Hom(X,M)

g∗→ Hom(X,N)

is exact for all X ∈ Ob(C), so kerf∗ = 0 and imf∗ = kerg∗. We wish to now show that

0→ L
f→M

g→ N

is exact. This requires showing: 1. kerf = 0, 2. imf ⊂ kerg, and 3. kerg ⊂ imf . To do this,
we use the fact that the Hom sequence is exact for any choice of X. This allows us to pick
particularly nice choices of X to prove things we want.

1. To show kerf = 0, we pick X = kerf . Then we are assuming that

0→ Hom(kerf, L)
f∗→ Hom(kerf,M)

g∗→ Hom(kerf,N)

is an exact sequence. Let i : kerf → L be the inclusion of the kernel of f into L. Then
by definition of kernel, f∗(i) = f ◦ i = 0, which implies that i ∈ kerf∗ by definition. But
kerf∗ = 0 by our assumption! Thus i = 0; that is, the inclusion of the kernel of f into
L is the zero map. This happens if and only if kerf is the zero object, so kerf = 0.

2. To show imf ⊂ kerg, we will take X = L. Then we are assuming the exactness of the
sequence:

0→ Hom(L,L)
f∗→ Hom(L,M)

g∗→ Hom(L,N).

In particular, the identity morphism 1L lives in Hom(L,L), so f∗(1L) = f ◦ 1L ∈ imf∗.
But by exactness, imf∗ = kerg∗, so f ◦ 1L ∈ kerg∗. This means that for every l ∈ L,
f(1L(l)) = f(l) ∈ kerg. Since this holds for all l, we conclude that imf = f(L) ∈ kerg,
so imf ⊂ kerg.

3. Finally, we must show kerg ⊂ imf . Take X = kerg and let i : kerg → M be the
inclusion. Then we assume the exactness of the sequence:

0→ Hom(kerg, L)
f∗→ Hom(kerg,M)

g∗→ Hom(kerg,N).

Notice, g ◦ i = 0 by construction, so i ∈ kerg∗. Since we assume that kerg∗ = imf∗, we
have that i ∈ imf∗. Thus by definition of image, there is some morphism ϕ : kerg → L
such that f ◦ ϕ = i. This means that for all m ∈ kerg, we have f(ϕ(m)) = i(m), so
kerg ⊂ imf .

Points 1., 2., and 3. combined show that kerf = 0 and imf = kerg, establishing the
exactness of the sequence

0→ L
f→M

g∗→ N.

34

We will now present a corollary to this theorem, for which we omit the proof. A proof of
this corollary can be found in Schiffler’s book.

Corollary 1.6.2. In an abelian k-category C , a sequence

0→ L
f→M

g→ N → 0

splits if and only if for every X ∈ Ob(C), the following sequence is exact:

0→ Hom(X,L)
f∗→ Hom(X,M)

g∗→ Hom(X,N)→ 0.

Moreover, if

0→ L
f→M

g→ N → 0

splits then so does

0→ Hom(X,L)
f∗→ Hom(X,M)

g∗→ Hom(X,N)→ 0.

At this point, the reader may be wondering what this has to do with quivers. Well
first, this abstract nonsense and diagram chasing is inherently interesting to some (the
author). Second, what we have just done is quite powerful. We’ve proven things for any
abelian k-category! So any collection of objects and morphisms that satisfy Zooming Out
6 will also satisfy these theorems! This means that we’ve proven these theorems for short
exact sequences of representations of quivers, k-vector spaces, modules over rings, vector
bundles over a fixed topological space, and sheaves over a topological space just to name

a few! We should make a remark that if the exact sequence 0 → L
f→ M

g→ N → 0
does not split, then g∗ may not be surjective; that is, we may not get an exact sequence

0→ Hom(X,L)
f∗→ Hom(X,M)

g∗→ Hom(X,N)→ 0. Here is an example:

Example 1.6.3. Recall Example 1.5.3. Q was the quiver 1 → 2 and we considered the
representations 1, 1

2
, and 2. They fit into a short exact sequence of the form

0→ 2→ 1

2
→ 1→ 0

and we called them L, M and N , respectively, but now let’s call them S(1), P (1), and S(2)
respectively. This naming will be explained in the next chapter. In order for this sequence
to split as in Definition 1.5.2, we would need a map h : 1

2
→ 2 such that h ◦ f = 12. Let’s

compute Hom(1
2
, 2):

k 1 //

x
��

k
y
��

0 0 // k

Since x is a map to the zero vector space, x = 0. Let z ∈ k be in the top left vector space
of the square. Following the top of the square, we have z 7→ z 7→ yz. Following the bottom

35

we have z 7→ 0 7→ 0. Therefore we need yz = 0z and thus we need y = 0. We conclude
that Hom(1

2
, 2) = 0, and moreover, that there can’t exist such an h because there are no

nontrivial morphisms from 1
2

to 2. We have shown that f is not a section and therefore that

0→ 2→ 1
2
→ 1→ 0 does not split. Now let’s apply the covariant Hom functor Hom(S(1),−)

and get the exact sequence

0→ Hom(S(1), S(2))
f∗→ Hom(S(1), P (1))

g∗→ Hom(S(1), S(1)).

This sequence is exact because of Theorem 1.6.1; however, we claim that

0→ Hom(S(1), S(2))
f∗→ Hom(S(1), P (1))

g∗→ Hom(S(1), S(1))→ 0

is not exact because g∗ is not a surjection. To see this, we can (and should!) compute that
Hom(S(1), P (1)) = 0 and Hom(S(1), S(1)) ∼= k. Thus g∗ is a linear transformation from
a finite dimensional vector space of dimension 0, to a finite dimensional vector space of
dimension 1. Any linear transformation from a lower dimensional vector space to a higher
dimensional one can be injective but can not be surjective (why?). This example illuminates
the need for the splitting assumption in Corollary 1.6.4.

A natural question to ask here is, can we extend this sequence further to the right even
when g∗ isn’t surjective? The answer to this question is yes! But to do this, we will need new
ideas called extension functors, Exti(X,−) and Exti(−, X). We will see these at the end of
the next chapter. We end this section with a little more abstract nonsense. Both Theorem
1.6.1 and Corollary 1.6.4 involve the covariant Hom functor. We have dual statements for
the contravariant Hom functor (flip the arrows!)

Theorem 1.6.3. Let L
f→ M

g→ N → 0 be a sequence of objects and morphisms in an
abelian k-category C . Then it is exact if and only if

Hom(L,X)
f∗← Hom(M,X)

g∗← Hom(N,X)← 0

is exact for every X ∈ Ob(C).

Exercise 1.6.2. Prove the previous theorem.

Corollary 1.6.4. In an abelian k-category C , a sequence

0→ L
f→M

g→ N → 0

splits if and only if for every X ∈ Ob(C), the following sequence is exact:

0← Hom(L,X)
f∗← Hom(M,X)

g∗← Hom(N,X)← 0.

Moreover, if

0→ L
f→M

g→ N → 0

splits then so does

0← Hom(L,X)
f∗← Hom(M,X)

g∗← Hom(N,X)← 0.

36

2 Auslander-Reiten Translation

Throughout this chapter, unless otherwise specified, let Q denote an acyclic n-vertex quiver.
That is, Q has n vertices and no loops or cycles. A cycle is a path (Definition 1.1.3) in the
quiver that starts and ends at the same vertex. A loop is a cycle of length 1.

2.1 Projectives, Injectives, and Simples in repQ

Question 2.1. Why did we use those naming conventions in Example 1.6.3?

We will spend this section answering this question. Recall that our goal is to classify
all isoclasses of indecomposable representations and the morphisms between them. To do
this, it would be helpful to further classify the indecomposable representations into three
classes: projective, injective, and simple representations. This classification is certainly not
exhaustive, there are representations of some quivers that are neither projective, injective, nor
simple. To explain what makes these representations ‘projective’, or ‘injective’, or ‘simple’,
we will need more category theory and after the last section, it’s probably best to push that
off for a little. We will describe what these words mean in the next section.

Definition 2.1.1. We define the simple representation of Q at vertex i, denoted by
S(i), as the representation whose morphisms and vector spaces are all zero, with the only
exception that the vector space at the ith vertex is k.

It follows from the definition that each quiver has precisely n = |Q0| of these simple
representations. Notice that these representations are indecomposable (try to decompose it
and see what happens!).

Example 2.1.1. Consider the quiver Q given by

3
γ

��
1 α // 2

β

��
4

Then the simple at each vertex is given by

37

0
0

��
S(1) : k 0 // 0

0

��
0

0
0

��
S(2) : 0 0 // k

0

��
0

k
0

��
S(3) : 0 0 // 0

0

��
0

0
0

��
S(4) : 0 0 // 0

0

��
k

We use the shorthand S(1) = 1, S(2) = 2, and so on.

The definitions of projectives and injectives are more complicated.

Definition 2.1.2. The projective representation of Q at vertex i is the representation
P (i) = (P (i)j, φα) defined as follows.

The vector space P (i)j is the one whose basis consists of all paths from i to j. In other
words, when we are constructing the projective at vertex i, we look at all the paths out of i.

If α : j → l is an arrow in Q from j to l, then the morphism ϕα : P (i)j → P (i)l is the
morphism defined on the basis by composing the paths from i to j with α. More precisely,
let p ∈ P (i)j be a path from i to j. So p = β1β2 . . . βn where s(β1) = i and t(βn) = j. Then
ϕα(p) = pα = β1β2 . . . βnα. This new path starts at s(β1) = i and ends at t(α) = l. Thus
pα ∈ P (i)l.

The morphism ϕα gives an injection from the basis of P (i)j to that of P (i)l. We extend
ϕα linearly to the entire vector space P (i)j as in Proposition 1.1.1; that is, an arbitrary
element of P (i)j is a linear combination of the basis elements, which are the paths from i to
j. Thus an arbitrary element of P (i)j can be written as

∑
p λpp where we are summing over

all paths p in the basis of P (i)j and the λp ∈ k are scalars. We define

ϕα(
∑
p

λpp) =
∑
p

λpϕα(p) =
∑
p

λppα.

Example 2.1.2. Let Q be the quiver from Example 2.1.1. Let’s find P (1). We begin by
computing the vector spaces. The first one is P (1)1, which is the vector space of all paths from
1 to 1. There is precisely one of these, namely the lazy path e1. Thus a basis for P (1)1 = {e1}
and we conclude that P (1)1 is a one dimensional k vector space, hence P (1)1 ∼= k. Now let’s
compute P (1)2. There is only one path from 1 to 2, namely α. There is technically two other
paths e1α and αe2, however, recall that both of these paths are the same as α in the algebra
kQ. Therefore a basis for P (1)2 is {α}, so P (1)2 ∼= k. Similarly, a basis for P (1)4 is {αβ}, so

38

P (1)4 ∼= k. The one vertex that is different is vertex 3. Notice that if we start at one and
follow α, there is no way to get to vertex 3 since γ starts at vertex 3 and ends at vertex 2.
Therefore, there is no path from vertex 1 to vertex 3. We conclude that P (1)3 = 0. Thus we
have the vector spaces for P (1):

0
ϕγ

��
k ϕα // k

ϕβ

��
k

We now need to compute the morphisms. We will define these on the bases. We have that
ϕα sends e1 7→ e1α = α. Thus ϕα sends the basis of P (1)1 bijectively to the basis of P (1)2,
which is equivalent to the identity map between the two vector spaces k. Similarly, ϕβ sends
α 7→ αβ. So ϕβ maps the basis of P (1)2 bijectively to the basis of P (1)4 and hence, is
equivalent to the identity map between the two vector spaces k. Finally, ϕγ is the zero map
since it is a linear transformation from the zero vector space. Therefore P (1) is isomorphic to

0
0

��
P (1) ∼= k 1 // k

1

��
k

The reader should verify that the rest of the projectives at vertex i are given as follows.

0
0

��
P (2) ∼= 0 0 // k

1

��
k

k
1

��
P (3) ∼= 0 0 // k

1

��
k

0
0

��
P (4) ∼= 0 0 // 0

0

��
k

Remark 2.1.1. Notice that in 2.1.2, the only projective that is also simple is P (4). This is
because vertex 4 is a sink in the quiver. A vertex i in Q is called a sink if no arrows start at
i. This holds in general! The projective at vertex i is simple, P (i) = S(i), if and only if i is a
sink in Q.

39

Let’s do a more complicated example.

Example 2.1.3. Let Q be the quiver

2
γ

��
1

α

@@

β ��

4

3
δ

@@

Let’s compute P (1). We have the following bases for the vector spaces at each vertex
(check it!):

P (1)1 : {e1} ∼= k, P (1)2 : {α} ∼= k, P (1)3 : {β} ∼= k, P (1)4 : {αγ, βδ} ∼= k2.

Therefore P (1) is isomorphic to the following representation:

k
ϕγ

��
k

ϕα

@@

ϕβ ��

k2

k
ϕδ

??

It remains to find the morphisms. We have the following:

{e1}
ϕα7→ {α} =⇒ ϕα = 1 and {e1}

ϕβ7→ {β} =⇒ ϕβ = 1.

Now, {α} ϕγ7→ {αγ}, so ϕγ is not a bijection, just an injection. Recall that the basis for
P (1)4 is {αγ, βδ}, so ϕγ sends the basis of P (1)2 to the first basis element of P (1)4. Thus

ϕγ =

[
1
0

]
. Similarly,

{β} ϕδ7→ {βδ} =⇒ ϕδ =

[
0
1

]
.

Therefore P (1) is isomorphic to

k
1
0


��

k

1

@@

1 ��

k2

k
0
1


??

40

Wait! Does it matter the order in which we write the elements of the basis {αγ, βδ}?

Exercise 2.1.1. Show that if we made ϕγ =

[
0
1

]
and ϕδ =

[
1
0

]
, the two representations would

be isomorphic.

Exercise 2.1.2. Compute P (2), P (3), and P (4).

Dually, we can instead look at all the arrows into vertex i, and this would give us the
next definition. Even though we aren’t flipping any arrows in an obvious way (we will see
how the arrows are flipped in the next section), we are flipping the way we think of the bases.

Definition 2.1.3. The injective representation of Q at vertex i is the representation
I(i) = (I(i)j, φα) defined as follows.

The vector space I(i)j is the one whose basis consists of all paths to i from j. In other
words, when we are constructing the injective at vertex i, we look at all the paths into i.

If α : j → l is an arrow in Q from j to l, then the morphism ϕα : I(i)j → I(i)l is the
morphism defined on the basis by ‘deleting’ the arrow α from all paths from j to i which
start at α. If the path does not start at α, ϕα sends it to zero. More precisely, let p ∈ I(i)j
be a path from j to i. So p = β1β2 . . . βn where s(β1) = j and t(βn) = i. Then

ϕα(p) =

{
elβ2 . . . βn = β2 . . . βn β1 = α

0 otherwise

This new path starts at s(β2) = l and ends at t(α) = i. Thus β2 . . . βn ∈ I(i)l.

Wait! Why is 0 in I(i)l if it isn’t a path from l to i?

The morphism ϕα gives a surjection from the basis of I(i)j to that of I(i)l. We extend
ϕα linearly to the entire vector space I(i)j as in Definition 2.1.2; that is,

ϕα(
∑
p

λpp) =
∑
p

λpϕα(p)

Example 2.1.4. Let’s look at the quiver from Examples 2.1.1 and 2.1.2. Let’s compute I(2)
by first computing the vector spaces. The first one is I(2)1, which is the vector space of all
paths from 1 to 2. There is precisely one of these, namely α. Thus a basis for I(2)1 = {α}
and we conclude that I(2)1 is a one dimensional k vector space, hence I(2)1 ∼= k. Now let’s
compute I(2)2. There is only one path from 2 to 2, namely e2. Therefore a basis for I(2)2 is
{e2}, so I(2)2 ∼= k. Similarly, a basis for I(2)3 is {γ}, so I(2)3 ∼= k. The one vertex that is
different is vertex 4. Notice that if we start at 4, there is no way to get to vertex 2 since γ
starts at vertex 2 and ends at vertex 4. Therefore, there is no path from vertex 4 to vertex 2.
We conclude that I(2)4 = 0. Thus we have the vector spaces for I(1):

41

k
ϕγ

��
k ϕα // k

ϕβ

��
0

We now need to compute the morphisms. We will define these on the bases. Since α is the
only element in the basis of I(2)1, we only need to see what ϕα does to α. Note that α
is a path from 1 to 2 that starts with α, so ϕα(α) = e2. Thus ϕα sends the basis of I(2)1
bijectively to the basis of I(2)2, which is equivalent to the identity map between the two
vector spaces k. Similarly, ϕγ sends γ 7→ e2. So ϕγ maps the basis of I(2)3 bijectively to the
basis of I(2)2 and hence, is equivalent to the identity map between the two vector spaces
k. Finally, ϕβ is the zero map since it is a linear transformation to the zero vector space.
Therefore I(2) is isomorphic to

k
1

��
I(2) ∼= k 1 // k

0

��
0

The reader should verify that the rest of the injectives at vertex i are given as follows.

0
0

��
I(1) ∼= k 0 // 0

0

��
0

k
0

��
I(3) ∼= 0 0 // 0

0

��
0

k
1

��
I(4) ∼= k 1 // k

1

��
k

Remark 2.1.2. Notice that in 2.1.4, the only injectives that are also simple are I(1) and I(3).
This is because vertices 1 and 3 are each a source in the quiver. A vertex i in Q is called
a source if no arrows end at i. This holds in general! The injective at vertex i is simple,
I(i) = S(i), if and only if i is a source in Q.

Time for a slightly more complicated example:

42

Example 2.1.5. Let Q be the quiver from Example 2.1.3. Let’s compute I(4). We have the
following bases for the vector spaces at each vertex (check it!):

I(4)1 : {αγ, βδ} ∼= k2, I(4)2 : {γ} ∼= k, I(4)3 : {δ} ∼= k, I(4)4 : {e4} ∼= k.

Therefore I(4) is isomorphic to the following representation:

k
ϕγ

��
k2

ϕα
??

ϕβ ��

k

k
ϕδ

@@

It remains to find the morphisms. We have the following:

{γ} ϕγ7→ {e4} =⇒ ϕγ = 1 and {δ} ϕδ7→ {e4} =⇒ ϕδ = 1.

Now, {αγ, βδ} ϕα7→ {γ, 0}, so ϕα is not a bijection, just a surjection. Recall that the basis
for I(4)1 is {αγ, βδ}, so ϕα sends the first basis element of I(4)1 to the basis element of I(4)2
and the other element to 0. Thus ϕα =

[
1 0

]
. Similarly,

{αγ, βδ}
ϕβ7→ {0, δ} =⇒ ϕδ =

[
0 1

]
.

Therefore I(4) is isomorphic to

k
1

��
k2

[
1 0

] ??

[
0 1

]
��

k

k
1

@@

Exercise 2.1.3. Show that if we made ϕα =
[
0 1

]
and ϕβ =

[
1 0

]
, the two representations

would be isomorphic.

Exercise 2.1.4. Compute I(1), I(2), and I(3).

Remark 2.1.3. Notice that we need the assumption that Q has no cycles. For instance consider
the quiver Q : 1 � 2 with top arrow α and bottom arrow β. If we want to compute the
projective at one, then P (1)1 is the vector space with basis the set of all paths from 1 to 1:
{e1, αβ, αβαβ, . . . }. This is an infinite dimensional vector space and we have immediately
left repQ, the category of finite dimensional representations of Q.

The reader at this point may have noticed that all these representations are indecomposable
(if not, go notice it!). This is indeed the case and we will finish this section proving this.

Proposition 2.1.1. The representation S(i), P (i), and I(i) are indecomposable.

43

Proof. For the simples, this follows from the fact that S(i) has no subrepresentations other
than itself and 0. Therefore, there can’t be any ‘smaller’ representations that add up to
S(i) other than S(i) ⊕ 0, which is not a decomposition as in Definition 1.3.2. Now let’s
prove this for the projective P (i) = (P (i)j, ϕα). We will use a contradiction. Suppose
P (i) = M ⊕N for some finite dimensional representations M and N such that neither are
0 nor P (i). Since we assume Q to have no oriented cycles, the only way to get from a
vertex to itself is by taking the lazy path. That means that P (i)i ∼= k since it has a one
dimensional basis {ei}. This means that if we add M and N together, the direct sum of their
ith vector spaces must be k which is one dimensional. This implies that one of them must
be the zero space and the other must be one dimensional by the pigeon hole principle. We
need to pick one, so let’s say Mi

∼= k and Ni = 0. But we assume that N is not the zero
representation, so that means there must be some vertex in the representation at which the vec-
tor space is not zero. Suppose this happens at vertex l, so Nl 6= 0. We will contradict this fact.

The vector space P (i)l has a basis consisting of all paths from i to l. Let’s pick a path
p = β1β2 . . . βs from i to l. Then corresponding to this path in the representation P (i), we
have:

ki1
ϕβ1→ ki2

ϕβ2→ ki3
ϕβ3→ . . .

ϕβs→ kis+1 .

We can in general define the morphism for the path p by following (composing) all the
morphisms corresponding to each arrow in the path; that is, ϕp = ϕβs ◦ · · · ◦ ϕβ1 . If we feed
ϕp the unique basis element at vertex i, namely ei, then we get:

ϕp(ei) = ϕβs(. . . (ϕβ1(ei)) = ϕβs(. . . (ϕβ2(eiβ1)) = ϕβs(. . . (ϕβ3(eiβ1β2)) = · · · = β1β2 . . . βs = p.

On the other hand, this map ϕp defines a map from P (i)i to P (i)l, so by assumption we have
a map

ϕp : Mi ⊕ 0

ϕp 0
0 0


−→ Ml ⊕Nl

that sends the unique basis element ei of Mi to an element ϕp(ei) = p ∈ Ml. But since
we can do this for any path p, this means that all paths from i to l are contained in Ml.
In other words, the entire basis of P (i)l is contained in Ml and since P (i)l = Ml ⊕ Nl by
assumption, this forces Nl = 0. But this is a contradiction! We assumed that Nl 6= 0, so
therefore our original assumption is false. Namely, P (i) 6= M ⊕N for some finite dimensional
representations M and N such that neither are 0 nor P (i), and we conclude that P (i) is
indecomposable for each i.

Exercise 2.1.5. Show that I(i) is indecomposable.

2.2 Projectives, Injectives, and Simples in a Category

Question 2.2. What does it mean to be projective, injective, or simple?

The notion of projectivity, injectivity, and simplicity is very important and appears
frequently in mathematics. Of course, when an idea appears in a bunch of seemingly disparate
branches of mathematics, there must be some categorical notion that connects them all. The

44

following definition holds in any category, but then we would need the notions of epimorphisms
and monomorphisms. In an abelian category, these are the same as surjective morphisms
and injective morphisms respectively.

Zooming Out 9. Let C be an abelian k-category.

1. An object S ∈ Ob(C) is simple if and only if its only subobjects are S and 0. We have
already seen that the simple at vertex i is a simple object in repQ.

2. An object P ∈ Ob(C) is projective if and only if for any surjective morphism g : M →
N and morphism f : P → N , there is a morphism h : P → M such that g ◦ h = f .
Here is a picture:

P
h

~~
f
��

M g
// N // 0

This diagram commuting is equivalent to saying for every f ∈ Hom(P,N), there exists
some h ∈ Hom(P,M) such that g∗(h) = g ◦ h = f . This is precisely the definition of
surjectivity of g∗! Thus an object P in C is projective if and only if for any surjective
morphism g : M → N , the map

g∗ : Hom(P,M)→ Hom(P,N)

is surjective. That is, the functor Hom(P,−) takes surjective morphisms to surjective
morphisms g 7→ Hom(P, g) = g∗.

3. An object I ∈ Ob(C) is injective if and only if for any injective morphism g : N →M
and morphism f : N → I, there is a morphism h : M → I such that h ◦ g = f . Here is
a picture:

I

M

h

>>

Ng
oo

f

OO

0oo

Aha! We said we would flip the arrows! This diagram commuting is equivalent to saying
for every f ∈ Hom(N, I), there exists some h ∈ Hom(M, I) such that g∗(h) = h◦ g = f .
This is precisely the definition of surjectivity of g∗! Thus an object I in C is injective if
and only if for any injective morphism g : N →M , the map

g∗ : Hom(M, I)→ Hom(N, I)

is surjective. That is, the functor Hom(−, I) takes injective morphisms to surjective
morphisms g 7→ Hom(g, I) = g∗.

45

Okay, now it’s time to see why the projective at vertex i is actually a projective represen-
tation in repQ.

Proposition 2.2.1. The projective at vertex i, P (i), is a projective representation in repQ.

Proof. In order to prove this, we need to show that the first diagram in Zooming Out 9
commutes. So let g : M → N be a surjective morphism in repQ and let f : P (i) → N be
any map. Then we need to construct a map h : P (i)→M such that the following diagram
commutes:

P
h

~~
f
��

M g
// N // 0

To do this, we will rely on the structure of the projective at the vertex i. Let P (i) =
(P (i)j, ϕα),M = (Mj, ψα), and N = (Nj, ξα). Since the vector space P (i)j has a basis
consisting of all arrow from i to j, we should begin defining h at the ith vector space. Because
we want gi ◦ hi = fi, we need to analyze the map fi. We know that P (i)i is the vector space
with basis {ei} since we assume Q to have no loops or cycles. Thus fi is defined entirely by
where it sends ei. Suppose fi(ei) = ni ∈ Ni. Then since g is surjective, there exists at least
one element mi ∈ Mi such that g(mi) = ni. There could be multiple of them from which
we are picking one. The morphism h depends on this choice of mi which means that this
morphism h won’t be unique. But that’s okay! No where in the definition of projective object
do we require this map to be unique, we just need to show there is at least one. Okay, so then
lets define hi(ei) = mi. Then we have gi(hi(ei)) = gi(mi) = ni = f(ei), so gi◦hi = fi as needed.

Now we need to define hj for all the other vertices j and this is where the structure of
P (i) comes into play. We know that the basis of P (i)j is {pk : pk is a path from i to j in Q}.
Whence let pk ∈ P (i)j, so pk = β1β2 . . . βl where s(β1) = i and t(βl) = j. Then in the
representation M , we have a composition of the morphisms corresponding to this path,
namely ψβl ◦ · · · ◦ ψβ1 . We define hj by following the paths in Q; that is, hj(β1β2 . . . βl) =
ψβl(. . . (ψβ1(mi)) . . .).

Wait! Why did we define hj in this seemingly strange way?

Now that we have defined the map h, we leave the fact that h is well defined to the reader.

Exercise 2.2.1. Show that h : P (i) → M is a well defined morphism of representations (ie
show the boxes commute).

Now we need to show that g ◦ h = f . To do this, consider the diagram below. Using the
commutivity of the boxes, along with the definition of h, we leave this as an exercise to the
reader.

Exercise 2.2.2. Show that g ◦ h = f .

46

P (i)j
ϕα //

hj
��

P (i)k

hk
��

Mj
ψα //

gj

��

Mk

gk

��
Nj

ξα // Nk

P (i)j
ϕα //

fj

OO

P (i)k

fk

OO

Dually, we have the following proposition.

Proposition 2.2.2. The injective at vertex i is an injective object in repQ.

Exercise 2.2.3. Prove the previous proposition.

One reason we like projective and injective objects is the following proposition, which
holds in particular for representations of quivers.

Proposition 2.2.3. .

1. Let P be a projective object in an abelian k-category C . Then any exact sequence of
the form

0→ L→M
g→ P → 0

splits.

2. Let I be an injective object in an abelian k-category C . Then any exact sequence of the
form

0→ I
g→M → N → 0

splits.

Proof. We will prove 1. and to do this, we will show that g is a retraction which would show
that the sequence splits by Definition 1.5.2. Consider the identity morphism 1P : P → P .
Then since P is projective, by definition, we have the commutative diagram:

P
h

~~
1P
��

M g
// P // 0

Thus 1P = g ◦ h and g is a retraction.

Exercise 2.2.4. Prove the proposition for injectives.

Another useful fact about projectivity and injectivity is that it is preserved under direct
sums!

47

Proposition 2.2.4. .

1. If P and P ′ are objects in an abelian k-category C , then P ⊕ P ′ is a projective object
if and only if both P and P ′ are projective.

2. If I and I ′ are objects in an abelian k-category C , then I ⊕ I ′ is an injective object if
and only if both I and I ′ are injective.

Proof. We will prove 1. Suppose P ⊕ P ′ is a projective object. To show P is projective, let
f : P → N be a morphism and g : M → N a surjective morphism. Notice, we have a split

exact sequence 0→ P ′
i→ P ⊕ P ′ p→ P → 0 where i is the inclusion and p is the projection.

Since this sequence is split, p is a retraction and we have a morphism h′ : P → P ⊕ P ′

such that p ◦ h′ = 1P . Also, we have a map from P ⊕ P ′ to N given by the composition

P ⊕ P ′ p→ P
f→ N . Thus we have the following diagram:

P ⊕ P ′

h

��

p

��
P

h◦h′

zz

h′

aa

f
��

M
g // N // 0

The existence of the morphism h such that g ◦h = f ◦p follows from the projectivity of P ⊕P ′.
Then we have a morphism h ◦ h′ : P →M such that (g ◦ h) ◦ h′ = f ◦ (p ◦ h′) = f ◦ 1p = f .
Therefore P is projective and the proof for P ′ is analogous.

Conversely, suppose that both P and P ′ are projective objects, that g : M → N is a
surjective morphism, and f : P ⊕ P ′ → N is any morphism. Then we have the two following
diagrams.

P

h1

��

i1
��

P ⊕ P ′
p1

cc

f
��

M
g // N // 0

P ′

h2

��

i2
��

P ⊕ P ′
p2

cc

f
��

M
g // N // 0

The morphisms labeled h1 and h2 exist because P and P ′ are projective. The maps i1, i2, p1,
and p2 exist from similar short exact sequences as the one in the first paragraph.

Wait! Write down the sequences from which the maps i1, i2, p1, and p2 arise!

We need to construct a morphism h from P ⊕ P ′ to M that makes the triangle commute.
In general, this follows from the categorical definition of direct sum, which we have not
and will not define, but here we will assume that P, P ′,M, and N are all representations of
some quiver Q. We will define this map h by combining both the maps h1 and h2. Define

48

h(p+ p′) = h1(p) + h2(p
′). (The sum of two things may not even make any sense in M when

C is an arbitrary abelian k-category!)

Exercise 2.2.5. Show that this map is a well defined morphism in repQ and that g ◦ h = f .

This theorem is really quite useful for us! If we know all the indecomposable projectives
and injectives, then we know all the projectives and injectives because we can just add
them together. We do know that the projective/injective at vertex i is an indecomposable
projective/injective representation in repQ, but we don’t know that this is all of the inde-
composable projectives/injective representations. If we want to classify all indecomposable
representations of Q, then we certainly will need to find all indecomposable projectives
and injectives. Actually, the projective/injectives at vertex i are all of the indecomposable
projective/injectives which we will prove in the next section. But for now, we can show that
the collection of S(i) forms a complete collection of simples in repQ. To do this, we begin
with a lemma.

Lemma 2.2.5. For any indecomposable representation M in repQ, there exists a vertex i
such that S(i) is a subrepresentation of M .

Proof. We will do this by very strategically choosing the vertex i. Since we assume throughout
this section that Q does not have any cycles, there must be in some sense ‘a last nonzero
vector space’ in the representation. What we mean is that there must exist a vertex i at
which there are either no linear transformations out of Mi (i is a sink in Q), or all of the
linear transformations out of Mi are zero. Suppose there does not exists such a vertex. Then
at each vertex, there is a nontrivial linear transformation out of that vertex. But since there
are only finitely many vertices, this means there is no sink in the quiver Q, which means Q
has a cycle, a contradiction.

So suppose i is a sink or the vertex at which all linear transformations out of Mi are 0.
Then at vertex i, we have the following diagram:

0 0 //

0
��

k 0 //

fi
��

0

0
��

Ml
ϕα //Mi

0 // 0

Since Mi is a nontrivial vector space, its dimension is at least one, in which case there is an
injection from the one dimensional vector space k into Mi. We define the linear transformation
fi : k→Mi to be the inclusion. Define a morphism f : S(i)→Mi as (0, . . . , 0, fi, 0, . . . , 0).
Then f gives an injective morphism from S(i) to M , whence S(i) is a subrepresentation of
M as desired.

Theorem 2.2.6. A representation of Q is simple if and only if it is isomorphic to S(i) for
some vertex i in Q0.

49

Proof. We have already seen the reverse direction. If an object is isomorphic to S(i), then it
must be simple since S(i) is simple (only has S(i) and 0 as subrepresentations).

On the other hand, suppose we have a simple object M in repQ. Then by Lemma 2.2.5,
there exists a vertex i such that S(i) is a subrepresentation of M . Since M is simple, M
can’t have any subrepresentation other than M and 0, which forces M ∼= S(i).

Exercise 2.2.6. Write down some other simple representations for the one loop quiver.

1 α

We finish with two more properties of projective objects that will be very useful when we
begin constructing the so-called ‘Nakayama functor’. The first theorem says that the vector
space at vertex i of any representation of Q can be realized as the vector space of morphisms
out of the projective at vertex i.

Theorem 2.2.7. Let M be an object of repQ. Then for any i ∈ Q0,

Hom(P (i),M) ∼= Mi.

Proof. Before we begin, let’s give names to our representations. Let M = (Mi, ψα) and
P (i) = (P (i)j, ϕα). To show the above isomorphism, we will construct a linear transformation
φ between the vector spaces Hom(P (i),M) and Mi. Then we will show that this linear
transformation is a bijection, hence an isomorphism. So let φ : Hom(P (i),M) → Mi be
defined by φ(f = (fj)) = fi(ei). That is, we are defining φ just by where it sends the basis
{ei} of P (i)i and ignoring all the other linear transformations fj.

Exercise 2.2.7. Show that φ is a well-defined linear transformation.

Now we will show that φ is injective. To do this, we will show that it has trivial kernel;
that is, the only morphism from P (i) to M that φ sends to zero is the zero morphism.
Whence suppose φ(f) = fi(ei) = 0. Then at vertex i, we have that fi sends the entire
basis of P (i)i to zero, making fi the zero map. But this does not mean that f is the zero
morphism in general! We also need to show that fj = 0 for all the other maps! To do
this, we will rely on the structure of P (i). Let j be a different vertex in Q and consider
the linear transformation fj : P (i)j → Mj. We know that P (i)j has basis {p1, p2, . . . , pk}
where pl is a path from i to j in Q for each l. Choose one of these basis elements and call it
p = β1β2 . . . βm where s(β1) = i and t(βm) = j. Then by following the paths in Q, we have
morphisms ϕp = ϕβm ◦ · · · ◦ ϕβ1 : P (i)i → P (i)j and ψp : Mi →Mj. Using the definition of
P (i), as we’ve seen in the proof of Proposition 2.1.1, we have that ϕp(ei) = p. Since f is a
morphism of representations by assumption, every box for each β in the path p commutes, so
we have that fj ◦ ϕp = ψp ◦ fi. Since fi(ei) = 0 as shown in the beginning of this paragraph,
we have fj(p) = fj(ϕp(ei)) = ψp(fi(ei)) = ψp(0) = 0. Thus fj(p) = 0 and since this holds for

50

all p, fj sends the basis of P (i)j to 0, making fj = 0. Therefore f is the zero morphism.

Finally, to show surjectivity, we need to choose an element mi ∈ Mi, then construct
a morphism f ∈ Hom(P (i),M) such that φ(f) = mi. We do this by first specifying that
fi(ei) = mi, so we’ve defined the linear transformation at vertex i.

Exercise 2.2.8. Finish constructing the morphism f by following the paths in Q.

Therefore, φ is a bijective linear transformation between the two vector spaces, hence
Hom(P (i),M) ∼= Mi.

An immediate consequence of this theorem is the following.

Corollary 2.2.8. .

1. The vector space Hom(P (i), P (j)) has a basis consisting of all paths from j to i in Q,
which implies

End(P (i)) := Hom(P (i), P (i)) ∼= k.

2. If A = ⊕i∈Q0P (i), then the vector space End(A) = Hom(A,A) has a basis consisting of
all paths in Q.

Exercise 2.2.9. Use the previous theorem to prove the Corollary.

Wait a second, part 2. of the above Corollary looks familiar. Recall the path algebra
kQ from Definition 1.1.4. This is the algebra that has basis all paths in Q! Well, we can
multiply two morphisms together, fg(x) = f(x)g(x), and this multiplication satisfies all the
axioms in Definition 1.1.1, so End(A) is actually an algebra! If the two algebras have the
same basis, then as long as multiplication coincides, they are isomorphic! This means that
we can completely describe the path algebra of a quiver by just looking at the direct sum of
all the projectives at vertex i! Pretty neat. Without proving the result, we finish the section
by stating it here.

Theorem 2.2.9. Let Q be a quiver. Then we have the following isomorphism of algebras

kQ ∼= End(A)

where A = ⊕i∈Q0P (i) is the direct sum of the projectives at vertex i.

2.3 Projective/Injective Resolutions

The last section was pretty abstract, so in this section let’s do more examples. We have
already seen how we can use the projectives to understand the vector space at vertex i of
any representation M , Theorem 2.2.7. We have also seen how we can use projectives to
understand the path algebra kQ, Theorem 2.2.9. In this section, we will answer the following
two questions.

51

Question 2.3. How can we use projectives to understand an arbitrary representation M?
How do we know that P (i) and I(i) give a complete set of indecomposable projectives and
injectives?

We begin with the first question.

Zooming Out 10. Let C be an abelian k-category and M ∈ Ob(C).

1. A projective resolution of M is an exact sequence

· · · → P2 → P1 → P0 →M → 0

where each Pi is a projective object in C .

2. Dually, an injective resolution of M is an exact sequence

0→M → I0 → I1 → . . .

where each Ii is a injective object in C .

3. An abelian k-category C has enough projectives if for each object M , we can find a
projective object P and a surjective morphism P →M → 0.

4. An abelian k-category C has enough injectives if for each object M , we can find a
injective object I and an injective morphism 0→M → I.

We will show that the category repQ has enough projectives and injectives.

Theorem 2.3.1. Let M be a representation in repQ.

1. There exists a projective resolution of M of the form

0→ P1 → P0 →M → 0.

2. There exists an injective resolution of M of the form

0→M → I0 → I1 → 0.

sketch of proof. Let’s explicitly construct the projective resolution of the representation
M = (Mi, ϕα). Define

P1 = ⊕α∈Q1ds(α)P (t(α)) P0 = ⊕i∈Q0diP (i)

where diP (i) stands for the direct sum of di copies of P (i) where di is the dimension of Mi.
Then

0→ P1 → P0 →M → 0

is a projective resolution of M .

52

Dually, we define the injective resolution as follows. Define

I1 = ⊕α∈Q1dt(α)I(s(α)) I0 = ⊕i∈Q0diI(i).

Then
0→M → I0 → I1 → 0

is an injective resolution of M . It remains to show that these are projective/injective
resolutions. This proof is quite long and technical, and can be found in Schiffler’s book.

These resolutions are called the standard projective (injective) resolution of M .
There are other projective/injective resolutions other than the standard ones. An immediate
consequence of the existence of these projective/injective resolutions is the following:

Corollary 2.3.2. The category repQ has enough projectives and enough injectives.

Let’s construct some standard resolutions.

Example 2.3.1. Let Q be the quiver 1
α→ 2

β← 3
γ→ 4 and consider the representations

M = S(3) = 3 and N = 1 3
2 4
⊕ 4. To construct the standard projective resolution of

M , we begin by finding P0. To do this we look at the vertices in the quiver. Note that
for the representation M , the dimension of the vector space at each vertex is given by
d1 = 0, d2 = 0, d3 = 1, and d4 = 0. Therefore P0 = 0P (1)⊕ 0P (2)⊕ 1P (3)⊕ 0P (4) = P (3).
To find P1, we need to look at the arrows in the quiver. Actually, we only need to know the
dimension of the vector space at the starting point of each arrow ds(α). For the representation
M we have, ds(α) = d1 = 0, ds(β) = d3 = 1, and ds(γ) = d3 = 1. Therefore, P1 is given by
d1P (t(α))⊕ d3P (t(β))⊕ d3P (t(γ)) = 0P (2)⊕ 1P (2)⊕ 1P (4) = P (2)⊕ P (4). We have the
standard projective resolution given by

0→ P (2)⊕ P (4)→ P (3)→ S(3)→ 0.

We can also write this standard projective resolution as

0→ 2⊕ 4→ 3

2 4
→ 3→ 0.

Now let’s compute the standard projective resolution for N , the representation given by

k 1→ k 1← k

1
0


→ k2.

To compute P0, we need d1 = 1, d2 = 1, d3 = 1, and d4 = 2, so P0 = 1P (1)⊕ 1P (2)⊕ 1P (3)⊕
2P (4) = P (1)⊕ P (2)⊕ P (3)⊕ P (4)⊕ P (4). To compute P1 we need ds(α) = d1 = 1, ds(β) =
d3 = 1, and ds(γ) = d3 = 1, so P1 = 1P (2)⊕1P (2)⊕1P (4). Therefore the standard projective
resolution of N is

0→ P (2)⊕ P (2)⊕ P (4)→ P (1)⊕ P (2)⊕ P (3)⊕ P (4)⊕ P (4)→ N → 0.

53

Again, another way to write this is

0→ 2⊕ 2⊕ 4→ 1

2
⊕ 2⊕ 3

24
⊕ 4⊕ 4→1 3

2 4
⊕ 4→ 0. (∗)

Notice that projective resolution (∗) is not ‘minimal’ in the sense that we can remove a copy
of P (2) and P (4) from both P1 and P0 and still get a projective resolution:

0→ 2→ 1

2
⊕ 3

24
⊕ 4→1 3

2 4
⊕ 4→ 0.

Now we have constructed the two ‘minimal’ standard projective resolutions of M and N .

Exercise 2.3.1. Compute the ‘minimal’ standard injective resolutions of M and N .

But what does minimal mean anyway?

Zooming Out 11. Let C be an abelian k-category and M ∈ Ob(C).

1. A projective cover of M is a projective object P and a surjective morphism g : P →M
such that whenever g′ : P ′ →M is a surjective morphism with P ′ projective, there exists
a surjective morphism h : P ′ � P such that the following diagram commutes:

P ′

g′

��

h

~~~~
P g

//M

��

// 0

0

That is, a projective cover is the ‘smallest’ projective object that surjects onto M .

2. An injective envelope of M is an injective object I and an injective morphism
f : M → I such that whenever f ′ : M ↪→ I ′ is an injective morphism with I ′ injective,
there exists an injective morphism h : I ↪→ I ′ such that the following diagram commutes:

0

��
0 //M

f ′

��

f // IoO

h��
I ′

That is, an injective cover is the ‘smallest’ injective object into which M injects.

3. A projective resolution

· · · → P2
f2→ P1

f1→ P0
f0→M → 0

is called minimal if f0 : P0 → M is a projective cover and fi : Pi → ker(fi−1) is a
projective cover for every i ≥ 1.

54



4. An, injective resolution

0→M
f0→ I0

f1→ I1
f2→ . . .

is called minimal if f0 : M → I0 is an injective envelope and fi : coker(fi−1)→ Ii is
an injective envelope for every i ≥ 1.

Remark 2.3.1. Frankly, these definitions are technical and we don’t really need to use them
that often in this class. We just need to know that we can always get minimal projective and
injective resolutions in repQ and moreover, that they are unique up to isomorphism. A proof
of this for repQ can be found in Schiffler’s book.

One nice thing about repQ, only because our quiver does not have any cycles, is that
subrepresentations of projective representations are projective! An abelian k-category in
which subobjects of projective objects are projective is also called heredity.

Theorem 2.3.3. The category repQ is hereditary; that is, subrepresentations of projective
representations are projective.

This is nice because for instance, in the definition of minimal projective resolution,
we need that the map fi : Pi → ker(fi−1) is a projective cover. But here, the kernel of
fi−1 is a projective representation in repQ since it is a subrepresentation of the projective
representation Pi−1. So to find a projective resolution of M , we take a projective cover

P
f→M and get a projective resolution

0→ kerf
i→ P

f→M → 0,

which is exactly what we did in Example 2.3.1 and precisely how the standard projective
resolution is defined! Another benefit of this is that we can order the projectives!

Corollary 2.3.4. Let f : M → P be a nonzero morphism from an indecomposable represen-
tation M to a projective representation P . Then M is projective, and f is injective.

Proof. Since the image of f is a subrepresentation of P , it is a projective representation by
Theorem 2.3.1. Therefore the following short exact sequence ends at a projective representa-
tion, hence splits by Proposition 2.2.3:

0→ ker(f)→M → im(f)→ 0.

Therefore, M ∼= im(f)⊕ker(f) by Proposition 1.5.2. But we assume thatM is indecomposable!
So either M ∼= im(f) and ker(f) = 0 or vice versa. Since we assume that f is nonzero,
im(f) 6= 0, so we must have that M ∼= im(f) and ker(f) = 0. Therefore M is projective and
f has trivial kernel, making it injective.

This is a very useful result! This means that we can put a ‘partial order’ on the projective
representations of Q by inclusion. If the projective P embeds into the projective P ′, then P
is smaller than P ′.

55



Example 2.3.2. Let Q be the quiver 1→ 2← 3. Then we have one projective representation
at each vertex, namely P (1) = 1

2
, P (2) = S(2) = 2, and P (3) = 3

2
. Recall in Example 1.5.3,

we said that the subrepresentations are on the bottom and the quotient representations are
on the top. That means that we have injections P (2) ↪→ P (1) and P (2) ↪→ P (3). Therefore
P (2) is smaller than both P (1) and P (2). We can actually make them into the vertices of a
quiver where we write the smaller projectives on the left:

1
2

2

AA

��
3
2

This is the beginning of the so-called ‘Auslander-Reiten’ quiver for Q. This is a quiver that
contains all the indecomposable representations as vertices and ‘irreducible’ maps between
them as arrows. We will see how to fit all the other indecomposable representations into the
AR quiver in chapter three. But for now we can say that when Q doesn’t have any cycles,
we always start with the projectives on the left like in this example.

We end this section by finally showing that the P (i) form a complete set of indecomposable
representations in repQ. To do this, we must introduce some new terminology.

Definition 2.3.1. Let A = ⊕i∈Q0P (i). A representation F ∈ repQ is called free if F ∼=
A⊕ A⊕ · · · ⊕ A.

So free representations are direct sums of direct sums of P (i).

Proposition 2.3.5. A representation M in repQ is projective if and only if there exists a
free representation F in repQ such that M is isomorphic to a direct summand of F .

Proof. Suppose that M is a projective representation with dimension vector dim(M) =
(d1, d2, . . . , dn) (Definition 1.2.1). Then by taking the standard projective resolution of M ,
we get a surjection g : ⊕i∈Q0diP (i)→M , which gives a short exact sequence

0→ ker(g)→ ⊕diP (i)→M → 0.

Again by Proposition 2.2.3, since we assume that M is projective, this sequence splits and
⊕diP (i) ∼= ker(g)⊕M by Proposition 1.5.2. Therefore, M is a direct sum of ⊕diP (i), which
is a free representation by definition.

Conversely, suppose that M is isomorphic to a direct summand of a free representation F .
Then M is a direct sum of representations of the form P (i), which are projective. Since the
sum of projective representations is a projective representation by Proposition 2.2.4, we have
that M is projective.

56



Corollary 2.3.6. Any projective representation P ∈ repQ is a direct sum of P (i)’s:

P ∼= P (i1)⊕ P (i2)⊕ · · · ⊕ P (ik)

with the ij’s not necessarily distinct.

Proof. By the previous proposition, any projective P is a direct summand of a free represen-
tation F , which is by definition a direct sum of direct sums of P (i).

Okay great! Now we have a complete list of indecomposable simples, S(i), and indecom-
posable projectives, P (i). We get the fact that I(i) is a complete list of indecomposable
injective representations from the ‘Nakayama functor’, which we will define in the next
section.

2.4 Auslander-Reiten Translation

In this section, we will answer the question:

Question 2.4. What is Auslander-Reiten theory?

The Auslander-Reiten translate is the main tool used by mathematicians today to study
the category repQ. What’s even cooler is that Maurice Auslander was a mathematician
at Brandeis! In fact, Idun Reiten visited Brandeis and had an office on the second floor
of Goldsmith. Kiyoshi Igusa, current professor at Brandeis and my advisor, told me that
Maurice and Idun were frequently discussing Auslander-Reiten theory in the office next to his.
Of course at the time it wasn’t called that, but the AR translate is so important that today
it is named after them. To define the translate, we will need some more category theory. The
same way we have the notion of two vector spaces, or representations, or algebras of being
‘the same’ (isomorphic), there is a notion of two categories being the same.

Zooming Out 12. Let C and D be two categories.

1. We say that two functors F,G : C → D are functorially isomorphic and write
F ∼= G, if for every object M ∈ Ob(C ), there is an isomorphism ϕM : F (M)→ G(M)
in D such that for every morphism f : M → N in C , we have the following commutative
diagram:

F (M)
F (f) //

ϕM
��

F (N)

ϕN
��

G(M)
G(f) // G(N)

2. A covariant functor F : C → D is called an equivalence of categories if there exists
a functor G : D → C such that G ◦ F ∼= 1C and F ◦G ∼= 1D . The functor G is called a
quasi-inverse of F .

3. We say two categories C and D are equivalent, denoted by C ∼= D , if there exists an
equivalence of categories between them: F : C → D .

57



4. A contravariant functor F that has a (contravariant) quasi-inverse is called a duality.

5. We say two categories C and D are dual if there exsists a duality between them.

Aha! This is where the word dual comes from! And also, a duality is contravariant, which
means it flips the arrows! Let’s see an example of a duality.

Let Q be a quiver without cycles and let Qop denote the opposite quiver; that is, the
quiver obtained from Q by reversing all the arrows:

Q : 1→ 2← 3 Qop : 1← 2→ 3.

If Q = (Q0, Q1, s, t), then Qop = (Q0, Q
op
1 ) where

Qop
1 = {αop : s(αop) = t(α), and t(αop) = s(α)}.

Example 2.4.1. A duality between repQ and repQop is given by

D = Homk(−,k) : repQ→ repQop.

When we refer to the duality, this is what we mean. The duality D is a contravariant Hom
functor that is a little different than the one we’ve seen in the past. Instead of looking at all
morphisms into a representation of Q, we’re looking at all the k-linear maps from a morphism
into the field k. Namely, on representations M = (Mi, ϕα), we define

DM = (DMi, Dϕαop),

which is an object in repQop by definition, where DMi is the dual vector space of Mi; that
is, DMi := Homk(Mi,k). So the dual vector space is the vector space of linear transformations
from Mi to k. The dual of a vector space is isomorphic to the original vector space in a
‘canonical way’; that is, there is only one isomorphism between them up to ‘equivalence’.
Therefore, the dual space is algebraically really just the same vector space as the original one.

Exercise 2.4.1. Show that DV ∼= V for V a finite dimensional vector space over a field k.

Now that we know how to define the vector spaces, we need to define the linear transfor-
mations ϕαop , which we define to be the pullback of ϕα:

Dϕαop : DMt(α) → DMs(α) u 7→ u ◦ ϕα

Let’s check that this makes sense. The linear transformation ϕαop is defined on Homk(Mt(α),k),
so it eats morphisms u from Mt(α) to k, and returns morphisms from Ms(α) to k. We also
have a linear transformation ϕα : Ms(α) →Mt(α). So by doing ϕα first and then doing u, we
have a morphism

u ◦ ϕα : Ms(α)
ϕα→Mt(α)

u→ k ∈ Hom(Ms(α),k),

which is precisely what we need. Here is a picture to see how this is pulling back ϕα:

Ms(α)

u◦ϕα
$$

ϕα //Mt(α)

u

��
k

58



Okay great, we have defined the duality on objects M ∈ Ob(repQ); namely, M 7→ DM
defined above. Now we need to define it on morphisms! So let f : M → N be a morphism
of objects in repQ. Since the duality is contravariant, the arrows flip! So we need to define
Df : DN → DM in repQop. Let u = (u1, u2, . . . , un) ∈ DN . Then each ui : Ni → k is a
linear transformation from Ni to k by definition. Define Df(u) = u ◦ f . Then at each vertex
in the quiver i, we have

ui ◦ fi : Mi
fi→ Ni

ui→ k

is a linear transformation from Mi to k, which is precisely what we need for Df(u) ∈
DM . Moreover, since the composition of morphisms of representations is a morphism of
representations, Df : DN → DM is well defined. Here is a picture:

M

u◦f   

f // N

u
��
k

Now we have defined the duality on both objects and morphisms! But to make it a duality,
we need a quasi-inverse. It turns out that this functor is not too difficult to find. We can
define the exact same functor

Dop = Homk(−, k) = D : repQop → repQ

in an analogous way!

Exercise 2.4.2. Write down a complete definition of Dop. Show that D ◦Dop ∼= 1repQop and
Dop◦D ∼= 1repQ. There is a lot to do in this exercise, so make sure to talk with your classmates
(and me) about this one!

Now let’s see what the duality does to projectives. Let PQ(i) denote the projective
representation of Q at vertex i. Then PQ(i)j has a basis consisting of all paths from i to
j. After we apply the duality, DPQ(i)j = Hom(PQ(i)j,k) ∼= PQ(i)j, so the dimension of the
vector space does not change after applying the duality. What does change though is that all
the arrows in the quiver Q are flipped! This means that paths from i to j in Q are now paths
from j to i in Qop. That is, DPQ(i)j has a basis consisting of all paths from j to i in Qop.
But we have a name for this! This is precisely the vector space at vertex j of the injective
representation at vertex i of the opposite quiver! In other words DPQ(i)j ∼= IQop(i)j. With
some more work, we have the following proposition:

Proposition 2.4.1. We have DPQ(i) = IQop(i) for all vertices i ∈ Q0.

Exercise 2.4.3. Prove this proposition. Use the fact that DPQ(i)j = IQop(i)j shown in the
paragraph above. Then all that is left to show is that the maps are the same.

Let’s look at some consequences of this proposition. Fix the quiver Q and define projQ to
be the category of projective representations of Q and the morphisms are all the morphisms
between these representations in repQ. Then we know by Krull-Schmidt, Theorem 1.3.1,
any representation of Q decomposes as a direct sum of indecomposable representations in
an essentially unique way. Now by Proposition 2.2.4 and Corollary 2.3.6, any projective

59



representation decomposes as the direct sum of the P (i)’s. Thus to study projQ, it suffices
to study the P (i)’s. But by the previous proposition, Proposition 2.4.1, we know that this is
equivalent to studying the injectives at vertex i over the opposite quiver! Using a similar
argument, we have that studying these injectives is equivalent to studying injQop, the category
of injective representations of the quiver Qop. Therefore, we have the following corollary:

Corollary 2.4.2. The duality D : repQ→ repQop restricts to a duality projQ→ injQop.

Let’s see an explicit example of the duality at work.

Example 2.4.2. Let Q : 1 → 2 ← 3. Then we have the three indecomposable projective
representations:

P (1) =
1

2
= k 1→ k← 0

P (2) = S(2) = 2 = 0→ k← 0

P (3) =
3

2
= 0→ k 1← k

Applying the duality gives the following representations:

DP (1) =
2

1
= k 1← k→ 0

DP (2) = DS(2) = 2 = 0← k→ 0

DP (3) =
2

3
= 0← k 1→ k

Notice that over the opposite quiver Qop : 1 ← 2 → 3, these representations are pre-
cisely IQop(1), IQop(2), and IQop(3) from top to bottom respectively, illustrating the result in
Proposition 2.4.1.

Along with some other small details missing, we didn’t give a full proof of Corollary 2.4.2.
One reason for this is that we didn’t technically show that the injectives at vertex i form a
complete set of injectives. We need this in order to build all the injective representations in
injQ. To show this, we will use the very important and powerful Nakayama functor, which
we define now as a composition of the duality with another contravariant Hom functor.

Recall the notion of the contravariant Hom functor, Hom(−, Y ), defined just after Zoom-
ing Out 8. This was a functor from repQ to Vectk. It turns out that when we make a
special choice of Y , we can actually make this a functor from repQ to repQop. In particular,
consider the free Q-representation A = ⊕PQ(i). Then for any representation X in repQ,
the vector space Hom(X,A) is actually a representation! This does not happen in general
and relies on the structure of the free representation A. Let’s denote the representation by
M = Hom(X,A). To define this Qop representation, we must first define the vectorspaces,
whence define Mi := Hom(X,P (i)).

Now let α be an arrow from i to j in Q0. By Corollary 2.2.8, Hom(P (j), P (i)) has
basis consisting of all paths from i to j. Thus α is an element in Hom(P (j), P (i)); that is,

60



it defines a map from P (j) → P (i) by taking any element pj ∈ P (j) and assigning to it
the element αpj ∈ P (i). To define the linear transformations in the representation M , ie
ϕαop : Hom(X,P (j))→ Hom(X,P (i)), let f ∈ Hom(X,P (j)). We define ϕαop(f) = α ◦ f ∈
Hom(X,P (i)) as in the following diagram:

X

ϕαop (f) !!

f // P (j)

α

��
P (i)

Great, we have given Hom(X,A) = (Mi, ϕαop) the structure of a Qop representation, but
remember, we wish to make Hom(−, A) a functor to repQop. To do this, we must also define
it on morphisms, so let g : M → N be a morphism in repQ. We wish to define a morphism
Hom(g, A) = g∗ : Hom(N,A)→ Hom(M,A) in repQop. To do this, we take the pullback of g
as the notation may suggest; that is, g∗(f) = f ◦ g ∈ Hom(M,A). To make sure that g∗ is a
morphism in repQop, we need to make sure the following box commutes:

Hom(N,P (i))

g∗i
��

Hom(N,P (j))
ϕαopoo

g∗j
��

Hom(M,P (i)) Hom(M,P (j))
ψαop
oo

We start in the top right corner by letting f : N → P (j) ∈ Hom(N,P (j)) be a morphism
of representations. Then

g∗i (ϕαop(f)) = g∗i (α ◦ f) (by definition of ϕαop)

= (α ◦ f) ◦ g (by definition of g∗)

= α ◦ (f ◦ g) (Associativity of composition)

= ψαop(f ◦ g) (by definition of ψαop)

= ψαop(g
∗
j (f)) (by definition of g∗)

Therefore the box commutes and we have proven:

Lemma 2.4.3. The functor Hom(−, A) is one from repQ to repQop.

We are now ready to define the Nakayama functor!

Definition 2.4.1. The functor ν = DHom(−, A) is called the Nakayama functor.

A functor from a category to itself is called an endofunctor. So the Nakayama functor is
an endofunctor from repQ to itself, defined as the composition of Hom(−, A) and the duality
D:

repQ

ν

44
Hom(−,A) // repQop D // repQ

61



We wish to use the Nakayama functor to help us describe the indecomposable representa-
tions of Q. Recall Corollary 2.3.4. This Corollary states that there are no non-zero maps into
projective representations unless they are coming from projective representations; that is,
Hom(M,P ) = 0 for any projective representation P and any non-projective representation
M . Since A = ⊕P (i) is a projective representation, this holds for Hom(−, A), and hence
the Nakayama functor. Thus to see how we can use the Nakayama functor to study the
indecomposable representations, we can simply look at what it does to indecomposable
projective representations. Let’s compute ν(PQ(i)) = DHom(PQ(i), A). We first need to
compute the representation M = Hom(PQ(i), A) = (Hom(PQ(i), PQ(j)), ϕαop). The vector
space at vertex j is given by Mj = Hom(PQ(i), PQ(j)), which by Corollary 2.2.8, is the vector
space with basis consisting of all paths from j to i in Q. This is equivalent to being the
vector space in Qop whose basis consists of all paths from i to j since we flip the arrows in
Qop. This is the same thing as the vector space PQop(i)j.

Moreover, given any arrow α : h → j ∈ Q1, the morphism ϕαop : PQop(i)j → PQop(i)h
is defined by p 7→ αp. This is precisely the definition of the morphisms in the projective
representation PQop(i), and therefore we conclude that Hom(PQ(i), A) = PQop(i), the inde-
composable projective Qop representation at vertex i. To see where the Nakayama functor
sends PQ(i), we must now find the dual of Hom(PQ(i), A) = PQop(i). But by Proposition
2.4.1, we know that the dual of a projective at vertex i is just the injective at vertex i over
the opposite quiver! Thus, D(PQop(i)) = IQ(i) = ν(PQ(i)).

Wait! Why is the opposite of the opposite the original quiver?

Therefore, we have shown that the Nakayama functor maps the indecomposable projectives
to indecomposable injectives. Actually, even more is true:

Theorem 2.4.4. The restriction of the Nakayama functor to projQ gives an equivalence of
categories ν : projQ→ injQ whose quasi-inverse is given by

ν−1 : Hom(DAop,−) : injQ→ projQ,

where DAop = ⊕IQ(i). Moreover, for any vertex i,

ν(P (i)) = I(i) and ν−1(I(i)) = P (i),

and given a path c from i to j, which defines a linear transformation fc : P (j)→ P (j), we
have

ν(fc) : I(j)→ I(i)

is given by deleting the path c.

Although we will not prove this, hopefully there is enough evidence to make this seem
believable to the reader. A proof can be found in Schiffler’s book. The key take away here
is that projQ ∼= injQ, which means that the isoclasses of indecomposable injectives are
precisely the representations that the isoclasses of indecomposable projectives are sent to
by the Nakayama functor! In particular, this along with Corollary 2.3.6, allow us to finally
conclude:

62



Corollary 2.4.5. Any injective representation I ∈ repQ is a direct sum of I(i)’s:

I ∼= I(i1)⊕ I(i2)⊕ · · · ⊕ I(ik)

with the ij’s not necessarily distinct.

Let’s see an example of the Nakayama functor at work:

Example 2.4.3. Let Q be the quiver from Example 2.3.2, so Q = 1→ 2← 3 and we have one
indecomposable projective representation at each vertex, namely P (1) = 1

2
, P (2) = S(2) = 2,

and P (3) = 3
2
. The injectives are given by ν(P (1)) = I(1) = 1, ν(P (2)) = I(2) = 31

2
, and

ν(P (3)) = I(3) = 3. We can also partially order the injectives a similar way in which we
ordered the projectives. Namely, an injective I is smaller than an injective I ′ if there is a
surjective morphism from I ′ to I. This follows from a dual statement to Corollary 2.3.4.
Below are the two orderings realized as quivers:

P (1)

P (2)

;;

##
P (3)

I(1)

I(2)

<<

""
I(3)

Notice that the Nakayama functor moves projQ, the quiver on the left, to injQ, the quvier
on the right. We will see this again in the next chapter.

We need one more result about the Nakayama functor before being able to define the
Auslander-Reiten translates.

Proposition 2.4.6. Given an exact sequence in repQ of the form L
f→ M

g→ N → 0, we
have that

ν(L)
ν(f)→ ν(M)

ν(g)→ ν(N)→ 0

is also an exact sequence in repQ.

We have seen something like this before. In Theorems 1.6.1 and 1.6.3 we have seen that
the Hom functor satisfies some very similar properties. Actually, these ideas are categorical!

Zooming Out 13. Let C and D be two abelian k-categories. A covariant (or contravariant)
functor F : C → D is called exact if it maps exact sequences in C to exact sequences in
D . Any duality or equivalence is exact for instance. This property is a bit too strong though
for most functors. For instance we’ve seen that the Hom functor maps exact sequences to
sequences that are not quite exact but pretty close.

If F is a covariant functor, then it is called left exact if for any exact sequence

0→ L
f→M

g→ N

63



the sequence

0→ F (L)
F (f)→ F (M)

F (g)→ F (N)

is exact. The functor F is called right exact if for any sequence

L
f→M

g→ N → 0

the sequence

F (L)
F (f)→ F (M)

F (g)→ F (N)→ 0

is exact.

If G : C → D is a contravariant functor, then G is called left exact if for any exact
sequence

L
f→M

g→ N → 0

the sequence

0→ G(N)
G(g)→ G(M)

G(f)→ G(L)

is exact. The functor G is called right exact if for any exact sequence

0→ L
f→M

g→ N

the sequence

G(N)
G(g)→ G(M)

G(f)→ G(L)→ 0

is exact.

The details of the proof of Proposition 2.4.6 are left as an exercise; however, the proof
follows from the fact that the duality D is exact since it is an equivalence of categories,
and the functor Hom(−, X) is left exact as we have seen in Theorem 1.6.3. Therefore the
composition of them both is right exact.

Exercise 2.4.4. Prove Proposition 2.4.6 in detail.

Okay, we are now ready to define the Auslander-Reiten Translates! Recall that Q is a
quiver without oriented cycles and let M be an indecomposable representation of Q.

Definition 2.4.2. Let
0→ P1

p1→ P0
p0→M → 0

be a minimal projective resolution of M . Applying the right exact Nakayama functor, by
Proposition 2.4.6, we get an exact sequence

ν(P1)
ν(p1)→ ν(P0)

ν(p0)→ ν(M)→ 0.

We can make this a short exact sequence by looking at the kernel of ν(p1) as follows:

0→ ker(ν(p1))→ ν(P1)
ν(p1)→ ν(P0)

ν(p0)→ ν(M)→ 0.

We define the Auslander-Reiten translate of M , denoted by τM , by τM := ker(ν(p1)).
Therefore, we get an exact sequence

0→ τM → ν(P1)
ν(p1)→ ν(P0)

ν(p0)→ ν(M)→ 0.

64



Definition 2.4.3. Dually, let

0→M
i0→ I0

i1→ I1 → 0

be a minimal injective resolution of M . Applying the left exact inverse Nakayama functor,
we get an exact sequence that we can extend to the right by taking the cokernel:

0→ ν−1(M)
ν−1(i0)→ ν−1(I0)

ν−1(i1)→ ν−1(I1)→ coker(ν−1(i1))→ 0.

We define the inverse Auslander-Reiten translate of M , denoted by τ−1M , by τ−1M :=
coker(ν−1(i1)). Therefore, we get an exact sequence

0→ ν−1(M)
ν−1(i0)→ ν−1(I0)

ν−1(i1)→ ν−1(I1)→ τ−1M → 0.

Let’s compute some AR-translates.

Example 2.4.4. Recall Example 2.3.1. We had Q = 1
α→ 2

β← 3
γ→ 4, and M = S(3) = 3.

We found a minimal projective resolution of M given by

0→ P (2)⊕ P (4)→ P (3)→ S(3)→ 0.

We can also write this standard projective resolution as

0→ 2⊕ 4→ 3

2 4
→ 3→ 0.

To find τM , we need to apply the Nakayama functor to the minimal projective resolution to
get

0→ τM → I(2)⊕ I(4)→ I(3)→ νS(3)→ 0,

which can also be written

0→ τM → 13

2
⊕ 3

4
→ 3→ 0.

Notice that ν(S(3)) = 0 since S(3) is not projective. Then τM is the kernel of the map
13
2
⊕ 3

4
→ 3. The stuff on the left hand side that gets sent to zero is a 1 and 3 on the top along

with the 2 and 4 on the bottom. Thus the kernel is precisely the representation 1 3
2 4

= τM .

Exercise 2.4.5. Compute τ−1M, τN, and τ−1N for M and N from Example 2.3.1.

Exercise 2.4.6. .

1. Let P be an indecomposable projective representation of Q. Show that τP = 0.

2. Let I be an indecomposable injective representation of Q. Show that τ−1I = 0.

65



3 Auslander-Reiten Quivers

The main tool used in achieving our semester long goal is called the Auslander-Reiten quiver.
In general, this is a very good first attempt at understanding repQ. In the case when there
are only finitely many indecomposable representations of Q, the Auslander-Reiten quiver
actually tells us everything about repQ. Recall that we have the Krull-Schmidt theorem,
Theorem 1.3.1. This theorem says that the indecomposable representations are our building
blocks for our representations. Isoclasses of indecomposable representations form the vertices
in the Auslander-Reiten quiver, so the vertices are the building blocks of the representations.

The arrows are given by so-called irreducible morphisms between representations. Intu-
itively, these are morphisms that don’t factor through another representation, so irreducible
morphisms are usually between representations that are very close (but not the same) in
dimension. Often times, all morphisms are given by composing irreducible morphisms, though
this is not always true. In the cases we will discuss in this chapter though, this will be
true. So in a certain sense, the morphisms between representations are built out of the
irreducible morphisms and we can think of our arrows as the building blocks for our morphisms.

Finally, even though this quiver already captures so much information about the category
repQ, it also provides information about so-called almost split sequences. An almost split
sequence in repQ is a short exact sequence of representations of the form

0→ τM
f→ ⊕Ei

g→M → 0

where both f and g are irreducible. These almost split sequences (or Auslander-Reiten
sequences) form so called meshes in the Auslander-Reiten quiver as in Figure 1.

1. E1

  
τM

==

M

2. τM

!!

M

E1

>>

3. E1

  
τM

==

!!

M

E2

>>

4. E1

  
τM //

==

!!

E2
//M

E3

>>

Figure 1: Four Types of Meshes

In these meshes, the morphisms and the inverse AR translate τ−1 move left to right while
the AR translate τ moves right to left. Though out of the scope of this course, it turns out
that one can show that every indecomposable representation of Q sits in a mesh like this.
It is called the existence theorem of almost split sequences in repQ. In this chapter we will
learn techniques to compute AR quivers for two different types of quiver.

66



3.1 Quivers of Type A
Question 3.1. How do we construct the AR-quiver for quivers of type A?

Before we address this question we need a definition.

Definition 3.1.1. A quiver of type An is one whose underlying graph is of the form

1− 2− · · · − n.

This is just a graph. To make it a quiver, we must direct the arrows so they have initial
and terminal points. We can orient the graph in any way we’d like. We will introduce three
methods for studying the AR quiver for quivers of type An.

Method 3.1.1. τ-orbits

Definition 3.1.2. Let M be an object of repQ. The τ -orbit of M is the following set:
{N ∈ Ob(repQ) : there exists i ∈ Z with N = τ iM}

The method of τ -orbits is essentially by definition. Since the maps in the AR quiver move
left to right, by Corollary 2.3.4, the projectives must be all the way on the left in the AR
quiver. Then for each projective we repeatedly compute its inverse AR translate until it turns
into an injective representation. At this point, by Exercise 2.4.6, we have reached the end
of the AR quiver since one more iteration of τ−1 will be zero. For quivers of type A, there
is only one projective and one injective on each τ -orbit. Thus, this method of construction
produces all the possible meshes and hence the entire AR quiver piece by piece through
making horizontal strips. Let’s do an example.

Example 3.1.1. Let Q = 1→ 2. This is a quiver of type A2. We know that there are two
projectives, P (1) = 1

2
and P (2) = 2 and that they form the left boundary of the AR quiver:

P (1)

P (2)

;;

Notice that this is the beginning of a type 1 mesh from Figure 1. Now we compute the
two τ−1 orbits (one for each projective) by first computing τ−1P (2). To do this, we must
take a minimal injective resolution of P (2). By the proof of Theorem 2.3.1, this is given by

0→ 2→ I(2)→ I(1)→ 0.

Now we apply the inverse Nakayama functor to this minimal injective resolution to attain

0→ ν−12→ P (2)→ P (1).

Since P (2) = 2 and P (1) = 1
2
, by definition, τ−1P (2) is the cokernel of the map 2→ 1

2
. This

is isomorphic to S(1) = 1; therefore, we have that τ−1P (2) = S(1) and we have completed a
mesh! The next step in the AR-quiver is the following:

67



P (1)

""
P (2)

;;

S(1)

Since S(1) = I(1) is an injective representation, we are done with this τ−1 orbit. So now
we do the same thing for P (1). But wait! The representation P (1) = I(2) is both projective
and injective! Thus τ−1P (1) = 0 and we have computed our first AR quiver!

Exercise 3.1.1. Write the AR quiver for the quiver 1→ 2← 3

Method 3.1.2. The Knitting Algorithm

The method of τ -orbits can be tedious since it involves several computations. The knitting
algorithm however, is a much faster method of constructing AR-quivers of type An. Intuitively,
it comes down to completing meshes by ‘knitting’ them together one at a time. This recursive
process, as we will see, builds the next vertical strip in the AR-quiver, where the method of
computing τ -orbits constructs the AR-quiver by making horizontal strips. There are three
types of meshes in the AR quiver of type An, namely type 1, 2, and 3 in Figure 1. Pictorially
how we knit the meshes can be seen in Figure 2.

(i) E1

M

>>

  

//

E2

E1

##
M

>>

  

τ−1M

E2

;;

(ii) E1

M

>>

//

E1

##
M

>>

τ−1M

(iii) M

  

//

E1

M

  

τ−1M

E1

;;

Figure 2: The Three Types of Knitting in Type A

As with any game, there are rules we need to follow to knit these meshes!

Definition 3.1.3. (Knitting Algorithm)

1. Compute the indecomposable projectives P (1), P (2), . . . , P (n)

68



2. Draw an arrow from P (i) to P (j) whenever there is an arrow j
α→ i in Q such that

each P (i) sits at a different level in the AR quiver.

3. Determine which type of mesh is incomplete ((i), (ii), or (iii) in Figure 2), and knit the
mesh such that

dimτ−1M =
∑
i

dimEi − dimM.

4. Repeat the previous step until we get negative integers in the dimension vector.

Let’s see this at work.

Example 3.1.2. Let Q = 1→ 2← 3→ 4.

Step 1 Compute the indecomposable projectives:

We have the projectives: P (1) = 1
2
, P (2) = 2, P (3) = 3

24
, and P (4) = 4.

Step 2 Line up the projectives in their partial order:

We have a map from P (2) into both P (1) and P (3). We also have a map from P (4) into
P (3). Thus we should have arrows from P (2) to both P (1) and P (3) and an arrow from P (4)
to P (3). Since there are three arrows in the quiver, we have found all the arrows between
projectives in the AR quiver. Here is one way to start the AR quiver:

1
2

2

@@

��
3
24

4

@@

Step 3 Knit the meshes:

There are two meshes that can be knitted here: the blue one and the red one. Let’s
knit the red one first. We need a representation τ−14 whose dimension vector is given
by dim 3

24
− dim4 = (0, 1, 1, 1) − (0, 0, 0, 1) = (0, 1, 1, 0). Thus dimτ−1L = (0, 1, 1, 0), so

τ−14 = 3
2
. To knit the blue mesh, we compute (1, 1, 0, 0) + (0, 1, 1, 1)− (0, 1, 0, 0) = (1, 1, 1, 1),

so τ−12 = 1 3
2 4

. We have knitted the meshes and therefore have completed step 3:

69



1
2

��
2

AA

��

1 3
2 4

3
24

@@

��
4

AA

3
2

Step 4 Repeat step 3 until done.

We continue to knit the meshes until we arrive at the following AR quiver:

1
2

��

3
4

��
2

AA

��

1 3
2 4

@@

��

3

3
24

@@

��

13
2

AA

��
4

AA

3
2

@@

1

To check that we are done, let’s try to complete the blue mesh. We would need dimτ−1 3
4

=
(0, 0, 1, 0)− (0, 0, 1, 1) = (0, 0, 0,−1). But no representation in repQ can have this dimension
vector, so we are done. Similarly, knitting the red mesh would also produce a negative
dimension vector (check it!). Therefore, we have knitted the AR quiver for Q.

Remark 3.1.1. Actually, we can extend the AR quiver to have objects in a different category
called the cluster category. These objects with negative dimension vectors correspond to
‘shifted’ representations. But this is far beyond the scope of this course.

One idea that we have slipped under the rug here is that representations of type A are
uniquely determined by their dimension vector. If there were two or more indecomposable
representations that had the same dimension vector, we could not use the knitting algorithm.

Lemma 3.1.1. Indecomposable representations of quivers of type A are uniquely determined
up to isomorphism by their dimension vector.

Sketch of Proof. Let v = (0, 0, . . . , 0, 1, 1 . . . , 1, 0, 0 . . . , 0) be a dimension vector. We define
the corresponding representation as Mv = (Mi, ϕα) where Mi = k if the ith entry in v is 1
and M1 = 0 otherwise. The map ϕα is the identity if both Ms(α) and Mt(α) are nontrivial
and the zero map otherwise. This association is unique up to isomorphism.

70



It is precisely this lemma on which the next method relies.

Method 3.1.3. Diagonals of a Polygon with n+ 3 Vertices

Let Q be a quiver of type An. Then to this quiver we can associate a triangulation of a
regular n+ 3-gon. Before providing a formal definition, let’s give an example.

Example 3.1.3. Let Q = 1 → 2 ← 3 be the quiver from Example 2.3.2. Then this
corresponds to the following triangulation of a 3 + 3 = 6-gon.

1

2

3

Each line segment through the interior of the polygon is called a diagonal. A maximal
collection of diagonals that don’t cross is called a triangulation. In the case of regular
polygons, a triangulation separates the polygon into a bunch of triangles.

We can associate a quiver to this triangulation with one vertex for each diagonal. Now in
this example, let’s look at the diagonals labeled 2 and 3. If we put a small circle around the
vertex at which they meet, we would need to traverse this circle clockwise to get from 3 to 2
while staying in the polygon. Therefore, 2 is clockwise from 3 and we draw an arrow from 3
to 2 in the quiver Q. Similarly, we draw an arrow from 1 to 2 in Q since 2 is also clockwise
from 1. Therefore this triangulation gives us back the quiver we started with! We can also
associate triangulations of n+ 3-gons to quivers of type An, but not in a unique way. For the
quiver in this example, to get a triangulation, we would need three non-crossing diagonals
labeled 1, 2, and 3 placed in the hexagon such that 2 is clockwise from 1 and 2 is clockwise
from three.

Exercise 3.1.2. Draw a different triangulation associated to the quiver in this example.

Okay great. We now have a way to get a triangulation of an n + 3-gon for any quiver
of type An. Since the representations of these quivers are uniquely determined by their
dimension vectors, Lemma 3.1.1, we can also represent all the indecomposable representations
as diagonals on this triangulation! Let Mγ be the indecomposable representation of a quiver
Q of type An whose dimension vector is given by (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0 . . . , 0) where the
1’s are located in spots i, i + 1, . . . , i + k. Then this representation is represented on the
polygon by a diagonal γ that crosses only the diagonals labeled i, i+ 1, . . . , i+ k.

Lemma 3.1.2. Fix a triangulation TQ associated to the quiver Q of type An. The association
described above of γ ↔Mγ is a bijection.

71



Example 3.1.4. Continuing with the quiver from the previous example, consider the repre-
sentation P (1) = 1

2
, whose dimension vector is (1, 1, 0). Then the diagonal associated to this

representation is the one that crosses both the diagonals labeled 1 and 2:

1

2

3

P (1)

Now this next theorem encapsulates what I find so beautiful about mathematics. Recall
how we find the AR translate. We needed 63 pages of mathematics just to define it! We
need to take a representation, find a minimal projective resolution, apply the Nakayama
functor, and find the kernel of a morphism in the abelian k-category repQ. This is a lot of
deep ideas and a complicated mathematical notion. This next theorem captures all of this
deep mathematics into the simple idea of rotating a polygon... Wow!

Theorem 3.1.3. Let Q be a quiver of type A, Mγ an indecomposable Q representation, TQ,
the triangulation associated to Q, and γ the unique diagonal on TQ representing Mγ. Then
the AR translate τMγ is the representation corresponding to an elementary clockwise rotation
of TQ.

What we mean by an elementary clockwise rotation is that we remove the labeled diagonals,
but keep the diagonal γ. If the polygon has n+ 3 vertices, we do a 2π

n+3
clockwise rotation of

the polygon. Then we put the labeled diagonals back into the diagram the same way they
were before the rotation. The arc γ will now cross new diagonals and corresponds to τ .

Example 3.1.5. Let’s continue the running example. We can find τ−1P (1) by rotating the
above polygon counter clockwise as follows:

1

2

3

P (1)

1

2

3
τ−1P (1)

τ−1

From this we see that τ−1P (1) = S(3).

But wait! If we know how to realize τ and τ−1 as rotations of a polygon, we can compute
the τ -orbits using these polygons and therefore construct the entire AR quiver!

72



Example 3.1.6. Below is the AR quiver for Q = 1 → 2 ← 3 in terms of polygons. We
delete the labeled diagonals for simplicity. This AR quiver should look familiar, we almost
computed it in Example 2.4.3!

P (1)

P (2)

P (3)

I(3)

I(2)

I(1)

3.2 Quivers of Type D
Question 3.2. How do we compute AR quivers for type D quivers?

Definition 3.2.1. A quiver of type Dn is one whose underlying graph is

n− 1

1 2 . . . n− 2

n

We will spend this section discussing how to compute the AR quiver for quivers of type
Dn. Just as with type A quivers, we will explain three methods.

Method 3.2.1. τ-orbits

Again, the projectives must be all the way on the left in the AR quiver and for each
projective we repeatedly compute its inverse AR translate until it turns into an injective
representation. The main difference in the AR quivers between type A and type D quivers
is the existence of a new mesh, the type 4 mesh in Figure 1. This mesh causes there to be
more than one projective on a horizontal strip, contrary to the case in type A. Let’s see an
example.

Example 3.2.1. Consider the quiver Q given by

73



3

1 // 2

@@

��
4

The projectives are P (1) = 1
2
34
, P (2) = 2

34
, P (3) = 3, and P (4) = 4. Since there is an

arrow from 1 to 2, 2 to 3, and 2 to 4, we order the projective representations as follows:

3

��
2
34

// 1
2
34

4

AA

We see now that there are two projectives on the same horizontal strip in the AR quiver,
which is different from the case of type A. Let’s compute τ−1P (2). To do this, we have a
minimal injective resolution

0→ 2

34
→ I(3)⊕ I(4)→ I(1)⊕ I(2)→ 0.

Applying the Nakayama functor, we get an exact sequence

P (3)⊕ P (4)→ P (1)⊕ P (2)→ 1
22
34

→ 0

where 1
22
34

is the cokernel of the map 3⊕ 4→ 1
2
34
⊕ 2

34
. Our updated AR quiver is:

3

��
2
34

// 1
2
34

// 1
22
34

4

AA

But wait! This means that 2
34
→ 1

2
34
→ 1

22
34

by definition is part of a new mesh! Continuing

right, we will see that for quivers of type D, the representations in a mesh can all lie on
the same horizontal strip; yet another difference from type A. Continuing with this τ orbit,
we compute τ−1 1

2
34

= 2, τ−12 = 1
2
, and τ−1 1

2
= 1, which is an injective so we’re done. The

updated AR quiver is then

74



3

��
2
34

// 1
2
34

// 1
22
34

// 2 // 1
2

// 1

4

AA

Computing the remaining two τ -orbits and inserting the remaining arrows gives us the
full AR-quiver.

3

��

2
4

��

1
2
3

��
2
34

AA

��

// 1
2
34

// 1
22
34

BB

��

// 2 // 1
2

// 1

4

BB

2
3

AA

1
2
4

BB

Notice that the representations 1
2
34
→ 1

22
34
→ 2 form a mesh where all the representations

lie on the same horizontal strip!

Wait! Why aren’t there any arrows pointing straight up or down?

Method 3.2.2. The Knitting Algorithm

We will now present the knitting algorithm for type D, which is quite similar to that of
type A. One key difference is that there are technically two new meshes we did not see in
type A as seen in Figure 3.

(iv) E1

τM //

==

!!

E2
//

E3

E1

  
τM //

==

!!

E2
//M

E3

>>

(v) M // E1
// M // E1

// τ−1M

Figure 3: The Two New Types of Knitting in Type D

Just like for type A, the knitting algorithm for type D relies on the fact that each
representation of a type D quiver is uniquely determined by it’s dimension vector. though
the association is not as straight forward as it is for type A.

75



Lemma 3.2.1. Any indecomposable representation of a type Dn quiver is uniquely determined
by its dimension vector (up to isomorphism).

Sketch of Proof. Let d = (d1, d2, . . . , dn) be a dimension vector of an indecomposable repre-
sentation. Then di = 0, 1, or 2 for all i. Moreover, if we have that di = 2, there can only be
certain values for i. Suppose that i is minimal, so di is the first occurrence of a 2 in d. Then
we have:

1. i = 2, 3, . . . , or n− 2, so the first entry can’t be a 2.

2. For all vertices j such that i ≤ j ≤ n− 2, dj = 2. So there is a string of 2’s all the way
until the vertex n− 2.

3. di−1 = 1 = dn−1 = dn. So the entry before the first 2 must be a 1 and the last two
entries must also be 1.

In terms of the graph of type Dn, representations look like this, where the number at each
vertex is the dimension of the vector space at that vertex:

1

0 . . . 0 1 . . . 1
αi 2 . . . 2

β1

β2

1

1

0 . . . 0 1 . . . 1 1 . . . 1

1

0

1 . . . 1 0 . . . 0 0 . . . 0

0

We define the corresponding representation Md = (Mi, ϕα) to have vector spaces Mi = kdi .
Now if either (or both) of the vector spaces Ms(α) or Mt(α) are zero, ϕα is the zero map. If
both Ms(α) or Mt(α) are nontrivial and of the same dimension, then ϕα is the identity map.
There is however one other possible option, namely when one vector space has dimension one
and the other has dimension 2. There are precisely three such arrows, αi, β1, and β2 depicted
above. Since all the maps from vertex i+ 1 to vertex n− 2 are the identity, in order to make
sure the representation is indecomposable, we need to keep track of the one dimensional
subspace associated to the map ϕαi . So consider the one dimensional subspace of Mi+1 given
by

76



{
imϕαi if αi points to i+ 1

kerϕαi otherwise

Then under the composition of the maps (or their inverses) ϕαn−3 ◦· · ·◦ϕαi+1
, this subspace

is sent to a one dimensional subspace of Mn−2. Let’s call this l1. We also have two other
one-dimensional subspaces of Mn−2, namely,

l2 =

{
imϕβ1 if β1 points to n− 2

kerϕβ1 otherwise
l3 =

{
imϕβ2 if β2 points to n− 2

kerϕβ2 otherwise

The condition that we impose on the three maps ϕαi , ϕβ1 , and ϕβ2 is that the subspaces
l1, l2, and l3 are pairwise distinct. This gives, up to isomorphism, an indecomposable
representation with dimension vector d.

Okay great, we have that the dimension vectors uniquely define the representations. If
the above construction of the representation is confusing, that’s okay. We won’t be looking
very closely at the linear transformations that make up the representation for the remainder
of this course. But now, we can knit the AR-quiver exactly the way we did in the knitting
algorithm for type A quivers, Definition 3.1.3. The only difference is that we have new meshes
to keep track of.

Example 3.2.2. Let Q be the D5 quiver:

4

��
1 // 2 3oo

��
5

Step 1 Compute the indecomposable projectives:

We have the projectives: P (1) = 1
2
, P (2) = 2, P (3) = 3

25
, P (4) = 4

3
25

, and P (5) = 5.

Step 2 Line up the projectives in their partial order:

We have an arrow from P (2) into both P (1) and P (3). We also have an arrow from P (3)
into P (4) and an arrow from P (5) to P (3). Since there are four arrows in the quiver, we have
found all the arrows between projectives in the AR quiver. Here is one way to start the AR
quiver:

77



5

��
3
25

// 4
3
25

2

AA

��
1
2

Step 3 Knit the meshes:

There are two meshes that can be knitted here: the blue one and the red one. We knit
them the exact same way as we did for type A to get:

5

��

3
2

3
25

@@

��

// 4
3
25

2

BB

��

13
25

1
2

@@

Step 4 Repeat step 3 to get:

5

��

3
2

��
3
25

@@

��

// 4
3
25

// 4
133
225

2

BB

��

13
25

??

  1
2

@@

3
5

Step 4 Repeat step 3. Notice here there are three meshes to complete: the blue, green, and
red!

78



5

��

3
2

��

4
13
25

3
25

AA

��

// 4
3
25

// 4
133
225

@@

//

��

1 3
2

2

BB

��

13
25

@@

��

4
33
25

1
2

@@

3
5

??

Step 4 Repeat step 3 until we finish with the AR quiver:

5

��

3
2

��

4
13
25

��

3

��

4

3
25

AA

��

// 4
3
25

// 4
133
225

@@

//

��

13
2

// 4
133
25

@@

//

��

4
3
5

// 4
3

CC

2

BB

��

13
25

@@

��

4
33
25

@@

��

4
13
2

BB

��
1
2

AA

3
5

@@

4
3
2

@@

1

Method 3.2.3. Triangulations of a Punctured n-gon

In this section, we will introduce another geometric interpretation of the AR quiver, similar
to the one introduced for type A. Since the indecomposable representations of type D are
uniquely determined by their dimension vectors, we can use arcs on some surface to represent
them. As the reader may guess, since the association of dimension vector to representation
is more complicated for type D than for type A, so will the geometric interpretation. To
each quiver of type Dn, we will be studying a punctured n-gon. This is precisely a regular
n-gon with a dot in the middle representing a puncture.

On this punctured n-gon, we can draw at least three types of arcs:

• Arcs that connect two vertices of the punctured n-gon. These are called exterior arcs.

• Arcs that connect the puncture to a vertex. These are called plain bridging arcs.

• Tagged arcs that connect the puncture to a vertex. These are called tagged bridging
arcs.

79



An arc (tagged or plain) is called a bridging arc if one of its endpoints is the puncture.
Tagged arcs are straight lines from the puncture to a vertex decorated with a small little notch.
Remember that we will associate each of these arcs to an indecomposable representation of a
quiver of type D. The reason we need notched arcs probably isn’t clear right now but we will
see why soon. An example of what we’re talking about is in Figure 4.

Figure 4: Examples of Arcs on a Punctured 5-gon

Recall that a triangulation is a maximal collection of non-crossing arcs. In type A, arcs
(diagonals) crossed when they crossed! That is, two diagonals crossed if and only if they crossed
when drawn in the polygon. This seems like the intuitive definition, but in the case of punc-
tured polygons, we define crossing arcs differently. Think of it like changing the set of rules by
which we play our game. What new things can we come up with if we play by these new rules?

To define crossing arcs formally, we need the notion of isotopy or homotopy, which is
beyond the scope of this course. The upshot here though is that for arcs on the punctured
polygon γ and γ′, if one of the arcs is an exterior arc, then the two arcs cross if and only
if they cross when we draw them. Let the crossing number, denoted by e(γ, γ′), be the
number of times the arcs γ and γ′ cross. The less intuitive case is when both γ and γ′ are
bridging arcs. Suppose that a and a′ are the endpoints of γ and γ′ on the boundary of the
punctured n-gon respectively. In this case we define the crossing number as follows:

e(γ, γ′) =


0 if γ and γ′ are both plain bridging arcs

0 if γ and γ′ are both tagged bridging arcs

0 if a = a′

1 if γ and γ′ have opposite tagging and a 6= a′

An example of crossing numbers can be seen in Figure 5.
Okay, now that we know the rules to the game, we can construct some maximal collections

of non-crossing arcs. In type A, triangulations always split the polygon into triangles. In
type D however, this need not be the case as can be seen in Figure 6.

Just like for type A, we want to associate a triangulation of a punctured n-gon to a quiver
of type D. Then we will see how many times arcs cross this triangulation, which will give us
the dimension vector of an indecomposable representation. Let Q be a quiver of type Dn.
We begin the triangulation TQ with an exterior arc γ1 that cuts off a triangle. We can choose
where this arc goes, so this association is certainly not unique. Then, just like for type A,
if there is an arrow 2 → 1 in Q, then we draw the unique exterior arc γ2 that is counter

80



γ′γ

e(γ, γ′) = 1

γ′

γ

e(γ, γ′) = 2

γ′γ

e(γ, γ′) = 1

γ′ γ

e(γ, γ′) = 0

γ′ γ

e(γ, γ′) = 1

γ
γ′

e(γ, γ′) = 0

Figure 5: Some Crossing Numbers

Figure 6: Some Triangulations

clockwise from γ1 and cuts off a triangle. If there is an arrow 1 → 2 in Q, then we draw
the unique exterior arc γ2 that is clockwise from γ1 and cuts off a triangle. We continue
this process until we get to the vertex n− 2. It is here where the quiver is fundamentally
different from a type A quiver, and hence the triangulation process will also be different.
There are 4 possibilities for what can happen at this vertex. All four possibilities along with
the corresponding triangulations is shown below in Figure 7.
Let’s see an example of a triangulation associated to a quiver.

Example 3.2.3. Let Q be the quiver

4

��
1 // 2 3oo

��
5

One triangulation associated to this quiver is the following:

81



n− 2 n− 2 n− 2 n− 2

n n

n− 2

n− 1

n

n− 2

n− 1

n

n− 2

n− 1

n

n− 2

n− 1

n

Figure 7: The Four Possibilities to Finish The Triangulation TQ

3

5 4

2

1

Now given a triangulation TQ, any arc that is not already in the triangulation will cross
the arcs that are in the triangulation. Actually, any such arc is uniquely defined by the
set of diagonals that the arc crosses. Suppose γ is an arc in a punctured n-gon and fix a
triangulation TQ of this n-gon where the arcs in the triangulation are labeled 1 through n.
Define dγ = (e(γ, 1), e(γ, 2), . . . , e(γ, n)). Then we have the following lemma which we will
not prove:

Lemma 3.2.2. Let Mγ be the unique representation with dimension vector dγ. Then there
is a bijection between arcs on the punctured n-gon with triangulation TQ and indecomposable
representations of Q given by γ 7→Mγ.

Let’s see an example.

Example 3.2.4. Let’s continue with the quiver and triangulation from Example 3.2.3. Then
we have the following arcs and corresponding representations:

82



3

5 4

2

1

γ

dγ = (1, 2, 2, 1, 1) Mγ = 4
133
225

Now looking at this triangulation, there is no way to draw an exterior arc that only
crosses arc 5 in the triangulation because it will also cross 3. But there is an indecomposable
representation whose dimension is given by (0, 0, 0, 0, 1), it is the simple at 5! Aha! This is
why we need these notched arcs! Representing the simple at 5, we have the following:

3

5 4

2

1

γ

dγ = (0, 0, 0, 0, 1) Mγ = 5

Now why is this so cool? Well because we have an analogous theorem to that of Theorem
3.1.3!

Theorem 3.2.3. Let Q be a quiver of type Dn and TQ a triangulation of a punctured n-gon.
The AR translate τ is given by elementary clockwise rotation of the punctured polygon with
simultaneous change of tags.

Using this theorem, we can give a geometric construction of the AR quiver by computing
τ -orbits just like we did for type A quivers.

Example 3.2.5. Let’s keep going with the quiver and triangulation from Example 3.2.3.
Then for instance, we have the following:

83



ρτρ

τ−1ρ

By computing τ -orbits, we get the AR quiver:

84


	Algebras, Quivers, Representations, and Categories
	Algebras and Quivers
	Representations of Quivers and Morphisms Between Them
	Direct sums, Indecomposables, Subrepresentations, and Kernels
	Quotients and Cokernels
	Exact Sequences and Abelian Categories
	(Hom) Functors

	Auslander-Reiten Translation
	Projectives, Injectives, and Simples in repQ
	Projectives, Injectives, and Simples in a Category
	Projective/Injective Resolutions
	Auslander-Reiten Translation

	Auslander-Reiten Quivers
	Quivers of Type A
	Quivers of Type D


