

Vorkurs Mathematik für Mathematikstudierende

Tag 2

Tagesablauf Vorkurs

10:15-11:45 Uhr Vorlesung in H11.11:45-13:15 Uhr Mittagessen, zum Beispiel in der Mensa nebenan.

Übungszeit: Bearbeitung der Aufgabenblätter in

Kleingruppen in H11 und H13.

14:15-14:45 Uhr Besprechung der Übungsaufgaben

Hinweis zu Vorlesungszeiten

13:15-14:15 Uhr

Oft werden an deutschen Universitäten die Vorlesungszeiten "cum tempore"(lat. mit Zeit) oder kurz **c.t.** angegeben: Unsere Vorlesungszeit ist 10-12 Uhr c.t.

Wiederholung

Aussage

Eine *Aussage* ist ein "sprachliches Gebilde", das entweder wahr oder falsch ist.

Verknüpfung von Aussagen

Disjunktion ∨ "oder"

Beweis von Äquivalenzen

Um eine Äquivalenz von Aussagen $A \Leftrightarrow B$ zu zeigen, müssen wir die beiden Implikationen $A \Rightarrow B$ und $B \Rightarrow A$ zeigen.

Plan für heute

Beweisverfahren

- Kontrapositionsprinzip
- Widerspruchsbeweis
- Beweis durch vollständige Induktion

Satz, Lemma, Korollar, ...

Sätze in verschiedenen Rollen und von verschiedener Wertigkeit

Hauptsatz / Funda- Wichtigster Satz einer Arbeit, Hauptresultat ei-

mentalsatz nes Textes.

Proposition Wichtiges Resultat das für die Theorie wesent-

lich ist und zum Hauptsatz hinführt.

Lemma Technischer Hilfssatz, der keine große Bedeu-

tung außerhalb der Theorie hat.

Korollar Direkte Folgerung aus einem Satz.

Bemerkung Hinweis des Autors, der unwesentlich für das

Verständnis des Textes ist. Dennoch oft sehr

wertvoll für den Leser.

Äquivalenz

Satz 11

Sei n eine ganze Zahl. Dann ist n gerade genau dann, wenn n^2 gerade ist.

Definition 12

Eine natürliche Zahl p>1 heißt Primzahl, wenn sie nur durch ± 1 und $\pm p$ teilbar ist.

Proposition 13 (Primfaktorzerlegung)

Sei n eine natürliche Zahl mit n > 1. Dann existieren Primzahlen p_1, \ldots, p_k mit $p_1 \le \cdots \le p_k$, sodass

$$n = p_1 \cdots p_k$$
.

Dies bestimmt p_1, \ldots, p_k eindeutig.

Beweis

Direkter Beweis von Satz 11.

- ⇒: Satz 1, gestern bewiesen.
- \Leftarrow : Wir nehmen zusätzlich an, dass n > 1. Der allgemeine Beweis folgt später.

Nach Proposition 13 existiert eine Primfaktorzerlegung

$$n = p_1 \cdots p_k \quad \text{mit} \quad p_1 \le \cdots \le p_k.$$
 (1)

Dann ist $n^2 = p_1^2 \cdots p_k^2$ die Primfaktorzerlegung von n^2 . Nach Annahme gilt $2 \mid n^2$. Auf Grund der Eindeutigkeit der Primfaktorzerlegung gilt damit $p_1 = 2$. Also ist nach Einsetzen in (1) $n = 2 \cdot p_2 \cdots p_k$ und damit $2 \mid n$.

Das war kompliziert.

Kontraposition

Direkter Beweis

Beim direkten Beweis einer Implikation $A \Rightarrow B$ führt man einige Beweisschritte/Implikationen durch um von A nach B zu gelangen:

$$A \Rightarrow C_1 \Rightarrow \cdots \Rightarrow C_k \Rightarrow B.$$

Hierbei sind C_1, \ldots, C_k Aussagen, die Zwischenschritte darstellen.

Lemma 14 (Kontrapositionsprinzip)

Seien A und B Aussagen. Dann gilt

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Beweis.					
A	В	¬A	$\neg B$	$\neg B \Rightarrow \neg A$	$A \Rightarrow B$
W	W	f	f	W	W
W	f	f	w	f	f
f	W	w	f	W	W
f	f	w	w	W	W

Beweis mit Kontrapositionsprinzip

Beweis von Satz 11 mit Kontraposition.

- ⇒: Wie zuvor.
- Die Kontraposition von "Wenn n² gerade ist, ist auch n gerade."

"Wenn n ungerade ist, ist auch n^2 ungerade."

Sei n ungerade, d.h. es gibt eine ganze Zahl k mit n=2k+1. Dann ist

$$n^2 = (2k+1)^2 = 4k^2 + 2k + 1.$$

Also ist n^2 ungerade.

Widerspruchsbeweis

Beim Widerspruchsbeweis einer Aussage A nehmen wir $\neg A$ an und versuchen einen Widerspruch herzuleiten.

Schwierigkeit: Es ist nicht klar wozu ein Widerspruch entsteht.

Widerspruchsbeweis Unendlichkeit der Primzahlen

Satz 15 (Euklid 300 v. Chr.)

Es gibt unendlich viele Primzahlen.

Widerspruchsbeweis.

Angenommen es gibt nur endlich viele Primzahlen p_1, \ldots, p_n . Definiere die ganze Zahl

$$k = p_1 \cdots p_n + 1$$
.

Nach Proposition 13 existieren Primzahlen q_1, \ldots, q_k , sodass $k = q_1 \cdots q_l$. Sei $q_1 = p_i$ für ein $1 \le i \le n$. Dann gilt $p_i \mid k$ und $p_i \mid p_1 \cdots p_n$. Damit folgt aber

$$p_i \mid k - p_1 \cdots p_n = 1.$$

im Widerspruch zur Annahme, dass pi eine Primzahl ist.

Widerspruchsbeweis Irrationalität von $\sqrt{2}$

Satz 16

Es existieren keine ganzen Zahlen $a,b \neq 0$, sodass $\sqrt{2} = \frac{a}{b}$.

Widerspruchsbeweis.

Seien a,b ganze Zahlen, sodass $\sqrt{2}=\frac{a}{b}$. Wir können annehmen, dass a,b keinen gemeinsamen Teiler $\neq \pm 1$ haben. Es gilt nach Quadrieren

$$2 = \frac{a^2}{b^2} \Rightarrow 2b^2 = a^2. {2}$$

Also ist a^2 gerade und damit nach Satz 11 auch a. Also existiert eine ganze Zahl k, sodass a=2k. Einsetzen in (2) liefert

$$2b^2 = 4k^2 \stackrel{\text{Kuerzen}}{\Rightarrow} b^2 = 2k^2 \Rightarrow 2 \mid b^2 \stackrel{\text{Satz } 11}{\Rightarrow} 2 \mid b.$$

Also gilt 2 | a und 2 | b im Widerspruch zur Annahme.

12/17

Aussageform auf den natürlichen Zahlen

Definition 17

Eine Aussageform (oder auch Prädikat) A(n) auf den natürlichen Zahlen ist ein sprachliches Gebilde, dass von einer Variable n abhängt und nach Einsetzen einer natürlichen Zahl für n zu einer Aussage wird.

Beispiel: A(n) = n ist eine gerade Zahl."

Satz 11 \Rightarrow Für alle natürlichen Zahlen n gilt, $A(n) \Leftrightarrow A(n^2)$.

Der Induktionsbeweis (auch vollständige Induktion) ist eine Methode um Aussagen der Form

"Für alle natürlichen Zahlen n gilt A(n)."

zu beweisen.

Induktionsbeweis Motivation

Satz 18 (Kleiner Satz von Gauss)

Für alle natürlichen Zahlen n gilt

$$1+2+\cdots+n=\frac{n(n+1)}{2}.$$

Die **vollständige Induktion** beruht auf folgenden Eigenschaften von №:

- Jede natürliche Zahl n hat einen eindeutigen Nachfolger S(n) > 1.
- Wenn: eine Teilmenge der natürlichen Zahlen 1 enthält und
 - für jede natürliche Zahl in dieser Teilmenge auch deren Nachfolger enthalten ist

Dann: Enthält die Teilmenge alle natürlichen Zahlen.

Induktionsbeweis

Induktionsprinzip

Sei $A(\cdot)$ eine Aussageform auf den natürlichen Zahlen \mathbb{N} .

Angenommen

- i) es gilt A(1) und
- ii) für alle natürliche Zahlen n gilt: Aus A(n) folgt A(n + 1).

Dann gilt A(n) für alle natürliche Zahlen n.

Aufschreiben von Induktionsbeweise:

- **IA:** Induktionsanfang: Hier wird die Aussage A(1) gezeigt.
- **IV:** Induktionsvoraussetzung: Wir notieren uns, die Aussage A(n) für eine natürliche Zahle n.
- **IS:** Induktionsschritt: Wir folgern A(n + 1) aus A(n).

Induktionsbeweis

Beweis von Satz 18.

IA:
$$A(1)$$
: $1 = \frac{n(n+1)}{2} = 1$ \checkmark .

IV: Sei *n* eine natürliche Zahl, sodass

$$1+2+\ldots n=\frac{n(n+1)}{2}.$$

IS: Dann ist

$$1 + 2 + \dots + (n+1) = (1 + 2 + \dots + n) + (n+1)$$
$$= \frac{n(n+1)}{2} + n + 1 = \frac{(n+2)(n+1)}{2}.$$

D.h. A(n+1) gilt.

Damit gilt die Aussage für alle natürlichen Zahlen n.

Induktionsbeweis

Satz 19

Für alle natürlichen Zahlen n ist $6^n + 4$ durch 5 teilbar.

Beweis.

|A:
$$A(1)$$
: $5 | 6 + 4 = 10 \checkmark$.

IV: Sei *n* eine natürliche Zahl, sodass

$$5 \mid 6^n + 4.$$

IS: Dann folgt

$$6^{n+1} + 4 = 6(6^n) + 4 = (1+5)6^n + 4 = 5 \cdot 6^n + (6^n + 4).$$

Nach IV gilt $5 \mid (6^n + 4)$ und somit folgt $5 \mid 6^{n+1} + 4$.

Damit gilt die Aussage für alle natürlichen Zahlen n.