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Vienna in the 1930’s:

Karl Menger founds the “Mathematische Kolloquium”. Among the
participants:

Kurt Gödel

Abraham Wald

Franz Alt

and several other geniuses.

Triggered by questions of Karl Schlesinger and Oskar Morgenstern,
the seminar also analyzed economic problems.

Question:

In a competitive market, do we always find price systems such that
markets clear?

Previous work: LéonWalras, Vilfredo Pareto.
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Sub-Question:

What coherence requirements of the agents’ preferences are
necessary for such equilibria to exist?

Franz Alt (1936): “On the measurability of utility”

Abraham Wald (1938): the lost paper!
Under mild conditions there is an equilibrium system of prices.
Element of proof: A fixed point theorem.

Abrupt end of the Viennese “Mathematische Kolloquium” in
march 1938.

Glory of Equilibrium Theory:

Kenneth Arrow, Gerard Debreu (1954).
Duality between goods and their prices.
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Mathematical Finance

Louis Bachelier (1900) “Théorie de la spéculation”:

Models the price of a stock (St)0≤t≤T in continuous time as a
stochastic process.
Independently Albert Einstein (1905) and Marjan Smoluchowski
(1906) use a similar model (Xt)0≤t≤T to model the movement of a
small particle in ℝ3: “Brownian motion” (Robert Brown 1827).

Heuristics of Brownian motion:

dSt := St+dt + St = "t dt
1
2

where ℙ["t = 1] = ℙ["t = −1] = 1
2
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An OLD MESSAGE FROM LUCRECIUS 99-55BC

DE RERUM NATURA LIBER SECUNDUS 125 - 141
Hoc etiam magis haec animum te advertere par est
corpora quae in solis radiis turbare videntur,
quod tales turbae motus quoque materiai
significant clandestinos caecosque subesse.
Multa videbis enim plagis ibi percita caecis
commutare viam retroque repulsa reverti
nunc huc nunc illuc in cunctas undique partis.
Scilicet hic a principiis est omnibus error.
Prima moventur enim per se primordia rerum,
inde ea quae parvo sunt corpora conciliatu
et quasi proxima sunt ad viris principiorum,
ictibus illorum caecis inpulsa cientur,
ipsaque < pro > porro paulo maiora lacessunt.
Sic a principiis ascendit motus et exit
paulatim nostros ad sensus, ut moveantur
illa quoque, in solis quae lumine cernere quimus

nec quibus id faciant plagis apparet aperte.



Deutsche Übersetzung

Noch stärker als das gerade Besprochene solltest du folgendes
zur Kenntnis nehmen:

Dass die Körperchen, die man im Sonnenstrahl herumtanzen
sieht,

signalisieren, dass auch der Materie solche konfusen
Bewegungen innewohnen,

und zwar unsichtbar und blind.

Denn du wirst begreifen, dass Vieles dort, von blinden Stössen
in Bewegung gesetzt,

seine Richtung ändert und auf einen Stoss hin sich wieder in
die Gegenrichtung bewegt,

bald hierhin und bald dorthin, überallhin,
in alle Richtungen:

Und dieses Herumirren (der Teilchen) gibt es vom Anfang an,
von den Atomen her.



Zunächst nämlich bewegen sich die Ursprünge der Dinge
(= die Atome) an sich;

daraufhin werden die Körper, die nur aus wenigen Atomen
zusammengebacken sind,

und die quasi den Kräften der Atome am nächsten stehen,
von deren blinden Impulsen

in Bewegung versetzt und setzen ihrerseits wiederum
in Bewegung, was ein bisschen grösser ist.

So steigt die Bewegung von den Ursprüngen (= Atomen) her
auf und gelangt

allmählich in den Bereich unserer Sinneswahrnehmung,
sodass sich auch die Teilchen bewegen,

die wir im Sonnenlicht beobachten können,
ohne dass doch so ohne weiteres

zu erkennen wäre, auf welche Impulse hin sie das tun.

Übersetzung: Dr. Gottfried Kreuz, Univ. Konstanz



Bachelier’s goal:

a rational theory of option pricing.

Bachelier’s Fundamental Principle:

“L’ éspérance mathématique du spéculateur est nul”
[The speculator in average does neither win nor lose].
Corresponds to the market efficiency hypothesis in its strong form.
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Consequence of Bachelier’s principle:

The pricing rule for a derivative security paying the random
amount CT at time T is given by

C0 := E[CT ] =

∫
Ω

CT (!) dℙ(!).

Example:

A European call-option pays the random amount

CT = (ST − K )+,

where K is the strike price.
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Following Bachelier’s pioneering work:

Paul Samuelson (1965)
Robert Merton (1973), Fisher Black, Myron Scholes (1973)
.
.
The Black-Scholes model: Brownian motion with drift on an
exponential scale.
.
.
Replace Bachelier’s fundamental principle by the no arbitrage
principle.



Modelization of trading:

For a trading strategy (Ht)0≤t≤T on the stock (St)0≤t≤T the total
gain at time T is the random variable

XT =

∫ T

0
Ht dSt

Motivation:

Xt+dt − Xt = Ht(St+dt − St).
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Definition:

An arbitrage for the stock (St)0≤t≤T is a trading strategy
(Ht)0≤t≤T such that

ℙ[XT =

∫ T

0
HtdSt ≥ 0] = 1 and ℙ[XT =

∫ T

0
HtdSt > 0] > 0.

Economically convincing argument:

In a liquid financial market there is no arbitrage.
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Fundamental Theorem of Asset Pricing:

If (St)0≤t≤T does not allow for an arbitrage, we can change the
probability measure ℙ to an equivalent probability measure ℚ such
that Bachelier’s principle holds true for (St)0≤t≤T under the
measure ℚ.
ℚ is called an “equivalent risk neutral measure” or an “equivalent
martingale measure”.

Challenge:

Put this “meta-theorem” into a precise mathematical form and
prove it rigorously!
Ross (1976), Harrison-Kreps (1979), Harrison-Pliska (1981),
Kreps (1981),
.
.
.
Delbaen-Schachermayer (1994, 1998).
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Consequence (via duality):

For a contingent claim CT the arbitrage free prices C0 at time
t = 0 are given by the interval(

inf
ℚ

Eℚ[CT ], sup
ℚ

Eℚ[CT ]

)
,

where ℚ runs through the equivalent martingale measures.

Proof:

duality theory of infinite-dimensional vector spaces.
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Special case:

When there is only one equivalent martingale measure ℚ for the
model (St)0≤t≤T , the interval reduces to one single price

C0 = Eℚ[CT ].

In this case we can replicate the contingent claim CT by a trading
strategy (Ht)0≤t≤T

CT = C0 +

∫ T

0
HtdSt

In the Bachelier as well as in the Black-Scholes model there is
precisely one equivalent martingale measure ℚ (“complete
markets”).

But:

These models, based on the Gaussian distribution, underestimate
the probability of extreme events!
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Portfolio Optimization:

How should an economic agent trade optimally?

Ingredients:

initial endowment x

financial market given by one (or many) stocks (St)0≤t≤T .

preferences of the agent modeled by a utility function
U : ℝ+ → ℝ, e.g. U(x) = log(x).

Harry Markowitz (1953):

one period model, mean variance analysis (corresponds to a
quadratic utility function U)
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Robert Merton (1973):

portfolio optimization in continuous time.

(P) Eℙ

[
U(x +

∫ T

0
Ht dSt)

]
→ max!

where H runs through all (admissible) trading strategies
(Ht)0≤t≤T .



Question:

Does the optimizer (Ĥt)0≤t≤T exist and how to calculate it?

“Primal” methods:

partial differential equations and variational analysis
(Hamilton-Jacobi-Bellman).

“Dual” methods:

(Bismut (1973), Pliska (1986), He-Pearson (1989),
Karatzas-Lehoczky-Shreve (1989)): optimization over the “dual”
objects, i.e., the equivalent martingale measures.
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Does the optimizer (Ĥt)0≤t≤T exist and how to calculate it?

“Primal” methods:

partial differential equations and variational analysis
(Hamilton-Jacobi-Bellman).

“Dual” methods:

(Bismut (1973), Pliska (1986), He-Pearson (1989),
Karatzas-Lehoczky-Shreve (1989)): optimization over the “dual”
objects, i.e., the equivalent martingale measures.



Question:
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Motivation:

Suppose first that (St)0≤t≤T defines a complete market so that
there is a unique equivalent martingale measure ℚ.

If (Ĥt)0≤t≤T is the optimal trading strategy and

X̂T = x +

∫ T

0
Ĥt dSt

denotes the corresponding optimal wealth at time T , then the
following relation is – at least – economically appealing

(R) U ′(X̂T (!)) = const dℚ(!)
dℙ(!) , ! ∈ Ω,

where the constant depends on the initial endowment x , but not
on ! ∈ Ω.

Admitting the relation (R) we can derive X̂T and therefore also the
optimal trading strategy (Ĥt)0≤t≤T from dℚ

dℙ .



Challenge:

Give a precise mathematical framework (as general as possible)
and prove rigorously that things really work a they should.

Question:

What are the precise regularity requirements?

Answer (Kramkov-Schachermayer (1999):

We do not need any special regularity requirements on the stock
price process (St)0≤t≤T . On the utility function U we need the
asymptotic elasticity conditon.

lim sup
x→∞

xU ′(x)

U(x)
< 1.

Good guys: U(x) = log(x), U(x) = xp

p with p < 1
Bad guy: U(x) ∼ x

log(x)
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Beyond semi-martingales

Recall that Brownian motion was defined (heuristically) via the
quadratic variation

dSt = "t dt
1
2

More generally, a (continuous) semi-martingale always satisfies

∣dSt ∣ ∼ dt
1
2

Mandelbrot (1961,...) and others propose fractional Brownian
motion as models for stock prices.

∣dSt ∣ ∼ dth,

where the Hurst index h is in ]0, 1[ ∖{1
2}.
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Theorem (Delbaen-Schachermayer 1994):

If the (continuous) stochastic process (St)0≤t≤T fails to be a
semi-martingale, then it allows for arbitrage.



Trading under transaction costs

For a trading strategy (Ht)0≤t≤T and transaction costs " > 0, we
again define the gain (or loss) as the random variable

XT =

∫ T

0
HtdSt − "

∫ T

0
StdVart(H)

Arbitrage under transaction costs

We say that the model (St)0≤t≤T of a financial market allows for
arbitrage under " transaction costs, if there is XT as above s.t.

ℙ[XT ≥ 0] = 1 and ℙ[XT > 0] > 0.
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Theorem (Guasoni-Rasonyi-Schachermayer 2008):

In a large class of models, including fractional Brownian motion,
there is no arbitrage, for any given level " > 0 of transaction costs.

In addition, for any given " > 0, we can always find consistent
price systems.

Remark

Adding transaction costs re-establishes the no arbitrage theory also
for non semi-martingales.
However, the Black-Scholes pradigm of replication now fails
dramatically (Soner-Shreve-Cvitanic 1995, Levental-Skorohod
1996).
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What to do?

Utility maximization (portfolio optimization) does make good
sense also in the presence of transaction costs:

u(x) = sup
H

E
[

U

(
x +

∫ T

0
Ht dSt − "

∫ T

0
St dVart(H)

)]
.

where U(x) is a fixed concave, increasing function
(e.g. U(x) = log(x).)

This problem still makes sense for ”random endowment” CT

u(CT ) = sup
H

E
[

U

(
CT +

∫ T

0
Ht dSt − "

∫ T

0
St dVart(H)

)]

Utility indifference pricing (de Finetti: ”certainty equivalent”):
define the price x for XT implicitly by

u(x) = u(CT )
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What to do?

Let Ĥx and ĤCT be the optimizing strategies corresponding to
x and CT ; the difference ĤCT − Ĥx may be interpreted as a
hedging strategy for CT

Research programm:
derive an asymptotic expansion for "→ 0 and h→ 1

2 how the
option prices and hedging strategies deviate from the classical
Black-Scholes price (compare Fouque-Papanicolao-Sircar,
Janecek-Shreve, Kramkov-Sirbu etc.).
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hedging strategy for CT

Research programm:
derive an asymptotic expansion for "→ 0 and h→ 1

2 how the
option prices and hedging strategies deviate from the classical
Black-Scholes price (compare Fouque-Papanicolao-Sircar,
Janecek-Shreve, Kramkov-Sirbu etc.).


