Freies Randwertproblem für Niveaus mit mehreren Phasen

Es werden Minimierer von Funktionalen der Form

$$J: \left\{ \begin{array}{ccc} H_0^1(\Omega) & \to & \mathbb{R}, \\ v & \mapsto & \int_{\Omega} |\nabla v|^2 \ dx + F(\mathcal{L}^N(\{v < c_1\}), \dots, \mathcal{L}^N(\{v < c_k\})) \end{array} \right.$$

untersucht. Dabei ist $\Omega \subset \mathbb{R}^N$ beschränkt und offen, $k \in \mathbb{N}$ und $0 \le c_1 < \ldots < c_k < \infty$ sind vorgegebene Levels. Je nach dem, welche Eigenschaften die Funktion F besitzt, können Aussagen über Minimierer von J getroffen werden. Unter relativ milden Annahmen können Existenz, Superharmonizität, Beschränktheit, Nichtnegativität und Harmonizität außerhalb der Levels c_1, \ldots, c_k für Minimierer von J nachgewiesen werden.

Eine erste Verschärfung der Bedingungen an F gestattet es, lokale Lipschitz-Stetigkeit für Minimierer nachzuweisen, eine weitere führt zu Nichtdegeneriertheitsresultaten für die Levels c_1, \ldots, c_k .

Schließlich wird durch die Untersuchung von Blow-Ups unter Rückgriff auf Resultate aus der Theorie der Cacciopoli-Mengen für gewisse F (die genaue Bedingung ist etwas schwächer als \mathcal{C}^1 mit strikt positiven partiellen Ableitungen) für einen Minimierer u von J an \mathcal{H}^{N-1} -fast jedem freien Randpunkt eine Entwicklung erster Ordnung sowie eine Sprungbedingung für den Gradienten entlang des freien Randes hergeleitet.