

Einführung in die Potentialtheorie Wintersemester 2020/21 Dr. Sarah Eberle

3. Übungsblatt (erschienen am 02.12.2020)

Aufgabe 3.1 (Votieraufgabe)

Sei $\Sigma \subset \mathbb{R}^3$ eine reguläre Fläche, Σ_{ext} bezeichne den Außenraum und Σ_{int} den Innenraum. Sei $F, G \in C^{(0)}(\Sigma)$. Beweisen Sie die folgenden Aussagen:

(a) Die Lösung $U \in C^{(2)}(\Sigma_{int}) \cap C^{(1)}(\overline{\Sigma_{int}})$ des Problems

$$\Delta U = 0 \quad \text{in } \Sigma_{int},$$

$$\frac{\partial U^{-}}{\partial \nu}(x) + H(x)U^{-}(x) = F(x) \quad \text{für } x \in \Sigma$$

ist eindeutig, wenn $H \geq 0$ und $H \neq 0$.

(b) Die Lösung $U \in C^{(2)}(\Sigma_{ext}) \cap C^{(1)}(\overline{\Sigma_{ext}})$ des Problems

$$\Delta U = 0 \qquad \text{in } \Sigma_{ext},$$

$$|U(x)| = \mathcal{O}\left(\frac{1}{|x|}\right), \quad |x| \to \infty,$$

$$|\nabla U(x)| = \mathcal{O}\left(\frac{1}{|x|^2}\right), \quad |x| \to \infty,$$

$$\frac{\partial U^+}{\partial \nu}(x) + H(x)U^+(x) = F(x) \qquad \text{für } x \in \Sigma$$

ist eindeutig, wenn H < 0.

Aufgabe 3.2 (Votieraufgabe)

Bestimmen Sie die Greensche Funktion bezüglich des äußeren Dirichlet Problems

$$U \in \operatorname{Pot}^{(0)}(\overline{\Omega_R^{ext}}),$$

 $U^+ = F \operatorname{auf} \Omega_R$

mit $\Omega_R^{ext} = \{ x \in \mathbb{R}^3 : |x| > R, R > 0 \}.$

Aufgabe 3.3 (Schriftliche Aufgabe)

Definition:

Die Legendre-Polynome $P_n(t)$ sind eindeutig durch folgende drei Eigenschaften bestimmt:

(i) $P_n(t)$ ist ein Polynom vom Grad n

(ii)
$$\int_{-1}^{1} P_n(t)P_m(t) dt = 0$$
, wenn $m \neq n$

(iii)
$$P_n(1) = 1$$

Berechnen Sie die ersten drei Legendre-Polynome $P_0(t), P_1(t), P_2(t)$ basierend auf den genannten Eigenschaften.

Hinweise zur Übungsblattbearbeitung:

- Zu schriftlichen Aufgaben soll eine Ausarbeitung/Lösung angefertigt werden. Die eingescannte Abgabe soll als PDF-Datei bis zum 14.12.2020 um 12:00 Uhr an Ihre Übungsleiterin geschickt werden. Nutzen Sie dazu Ihre studentische E-Mail-Adresse und geben Sie als Betreff Abgabe zur Einführung in die Potentialtheorie an.
- Zu **Votieraufgaben** wird keine schriftliche Abgabe verlangt. Die Lösung wird in der Übung besprochen.
- Alle Aufgaben von Übungsblatt 3 werden in der Übung (via Zoom) am 16.12.2020 besprochen.