Übungen zur Vorlesung Kommutative Algebra Übungsblatt 10

Dozent: Prof. Dr. A. Küronya 13.06.2016

Übungen: M. Nickel

Übung 1 (4 Punkte)

Sei $F:A\to B$ ein Ringhomomorphismus und M ein flacher A-Modul. Zeigen Sie, dass dann $M_B:=B\otimes_A M$ ein flacher B-Modul ist.

Übung 2 (4 Punkte)

Seien X, Y irreduzible affine Varietäten über einem algebraisch abgeschlossenen Körper k. Zeigen Sie, dass dann $X \times Y$ irreduzibel ist.

Übung 3 (4 Punkte)

Sei M ein A-Modul und seien N, P Untermoduln von M. Zeigen Sie:

1.
$$S^{-1}(N+P) = S^{-1}(N) + S^{-1}(P)$$

2.
$$S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P)$$

3.
$$S^{-1}(M/N) \cong (S^{-1}M)/(S^{-1}N)$$
 als $S^{-1}A$ -Moduln.

Übung 4 (4 Punkte)

Zeigen Sie die universelle Eigenschaft der Lokalisierung:

Sei S eine multiplikativ abgeschlossene Teilmenge eines Rings R. Dann existiert für jeden Ringhomomorphismus $\alpha:R\to T$ in einen anderen Ring T mit der Eigenschaft $\alpha(S)\subset T^\times$ ein eindeutig bestimmter Ringhomomorphismus $\varphi:S^{-1}R\to T$, sodass $\varphi(r/1)=\alpha(r)$ für alle $r\in R$.

Präsenzaufgaben Die folgenden Aufgaben sind zur eigenen Übung gedacht und werden nicht abgegeben oder korrigiert.

Übung 5

Überlegen Sie sich die universelle Eigenschaft des Tensorprodukts zweier Algebren und beweisen Sie sie.

Übung 6

Sei k ein algebraisch abgeschlossener Körper und seien X,Y affine Varietäten über k. Zeigen Sie die universelle Eigenschaft des Produkts von Varietäten:

Seien $f: Z \to X, g: Z \to Y$ Morphismen affiner algebraischer Varietäten. Dann existiert ein eindeutig bestimmter Morphismus $h: Z \to X \times Y$ mit $f = pr_1 \circ h$ und $g = pr_2 \circ h$, wobei pr_i die Projektion auf die *i*-te Komponente sei.

Zeigen Sie weiterhin: $k[X \times Y] \cong k[X] \otimes_k k[Y]$.

Zusatzaufgaben Die folgenden Aufgaben sind zur eigenen Übung gedacht und werden nicht abgegeben oder korrigiert.

Übung 7

Sei R ein Ring und $S\subset R$ eine multiplikativ abgeschlossene Teilmenge. Zeigen Sie: $S^{-1}R$ ist flach als R-Modul.

Übung 8

Sei Seine multiplikativ abgeschlossene Teilmenge eines Rings R und seien $I,J\subset R$ Ideale. Zeigen Sie

$$S^{-1}(I:J) = (S^{-1}I:S^{-1}J),$$

falls J endlich erzeugt.

Dieses Blatt kann bis spätestens 12:00 Uhr am Montag, den 20.06., im Schließfach ihrer jeweiligen Tutoren im 3. Stock, Robert-Mayer-Str. 6, abgegeben werden. Bitte denken Sie daran, Ihren Namen und Ihre Matrikelnummer mit anzugeben und alle Blätter, zum Beispiel mit einem Schnellhefter, zusammen zu halten.