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Abstract. We determine the Lyapunov spectrum of ball quotients arising
from cyclic coverings. The computations are performed by rewriting the sum

of Lyapunov exponents as ratios of intersection numbers and by the analysis of
the period map near boundary divisors.

As a corollary, we complete the classification of commensurability classes of

all presently known non-arithmetic ball quotients.
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1. Introduction

This paper is intended to contribute to the problem of classifying commensurability
classes of non-arithmetic ball quotients with a technique that has been useful to
understand the Teichmüller geodesic flow, the calculation of the Lyapunov spectrum.

By Margulis’ arithmeticity theorem ([Mar91]) non-arithmetic lattices only exist
in Lie groups of rank one. While there are irreducible non-arithmetic lattices in the
isometry group of real hyperbolic space of dimension n for any n, the construction
of non-arithmetic lattices in the isometry group of complex hyperbolic n-space
PU(1, n) is a hard open problem if n > 1.

Up to commensurability, all1 the presently known non-arithmetic ball quotients
arise from cyclic coverings of the projective line, an investigation started by [DM86]
and completed by [Mos86] and [Thu98]. Other constructions, earlier and shortly
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1After the completion of this work, finitely many new non-arithmetic ball quotients not

commensurable to the Deligne-Mostow examples have been found by Deraux, Parker and Paupert
[DPP14], see also [DPP11]
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2 ANDRÉ KAPPES AND MARTIN MÖLLER

after the work of Deligne, Mostow and Thurston, turned out to be commensurable
to these ball quotients. In fact, the book [DM93] gathers a lot of techniques to
detect commensurabilities between lattices.

To detect non-commensurability, the only technique appearing in the literature
seems to be the trace field and (non-)compactness. As a consequence, [Pau10,
Remark 5.1] asks whether among the 15 cyclic covering examples, there are 7, 8
or 9 commensurability classes. As one result of our methods we show that there
are in fact 9 classes. The first new commensurability invariant that we propose
is the set of Lyapunov exponents of a variation of Hodge structures associated
with ball quotients arising from cyclic coverings. We first give some background on
these notions and then explain that they fit into a larger class of commensurability
invariants.
Cyclic coverings. The ball quotients of Deligne and Mostow stem from families of
algebraic curves that are cyclic coverings of P1 branched at N points. For a fixed
degree d and a ramification datum (a1, . . . , aN ), one considers the algebraic curve

yd =

N∏
i=1

(x− xi)ai , (x1, . . . , xN ) ∈M0,N

Moving the branch points in M0,N yields a family of curves. The first cohomology
groups of the fibers of this family form a local system (or flat vector bundle) onM0,N

and the (1, 0)-subspaces of the Hodge decomposition yield a holomorphically varying
subbundle. This is the prototypical example of a variation of Hodge structures
of weight 1 (VHS) to have in mind for the theorem below (see Section 2.2 for a
definition of VHS).

Using the action of the Galois group Z/(d) of the covering, one can decompose the
cohomology into eigenspaces; these form themselves variations of Hodge structures
defined over some cyclotomic field, and the natural polarization on the fibers
sometimes is a hermitian form of signature (1, n), where n = N − 3. In this case,
the period map, which records the position of the (1, 0)-subspace in the cohomology,
is a holomorphic map from the universal cover of M0,N to a ball Bn, which is the
parameter space of Hodge structures of this type. The fundamental group of M0,N

in turn acts on a fiber of the local system by parallel transport of flat sections;
since it preserves the hermitian form, this yields a representation into PU(1, n),
and the period map is equivariant for the two actions of the fundamental group.
The main achievement of [DM86] is to define a suitable compactification of M0,N

and to determine for which parameters (d; ai) and which eigenspace one can extend
the period map to yield an isomorphism with the complex ball. In this case, the
representation of the fundamental group gives a lattice in PU(1, n), and the VHS is
called uniformizing.
Lyapunov exponents. The Lyapunov exponents of a VHS of rank k are 2k real
numbers λi that group symmetrically around 0 and measure, roughly speaking, the
logarithmic growth rate of cohomology classes under parallel transport along the
geodesic flow of the ball quotient. By Oseledets’ theorem such Lyapunov exponents
can be associated to any ergodic cocycle under a weak integrability hypothesis which
holds for variations of Hodge structures, see Lemma 2.7.

Lyapunov exponents for VHS have first been investigated for the space ΩMg of
flat surfaces, i.e. pairs (X,ω) of a compact Riemann surface together with a non-zero
holomorphic one-form. This space admits a natural action of SL2(R), and the action
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of the diagonal subgroup is the Teichmüller geodesic flow, see [Zor06] for a survey.
In this situation Lyapunov exponents have been determined e.g. for families of cyclic
coverings branched over 4 points in [BM10] and [EKZ11]. The simplicity of the
spectrum (but no precise values) are known for a generic flat surface (X,ω) of genus
at least two. A fundamental observation of Kontsevich and Zorich (see [Kon97] and
also [EKZ14]) relates the sum of Lyapunov exponents to the degree of the Hodge
bundle (or a summand, if the Hodge structure splits) and this degree can actually
be calculated.

For a comparison with our Theorem 1.1, we state Kontsevich’s formula for the
sum of Lyapunov exponents in the case of a family of curves f : X → C over a
compact hyperbolic curve C = H/Γ. The VHS in question is the relative cohomology
R1f∗C together with the subbundle f∗ωX/C of relative 1-forms pushed forward to
C. In this case,

g∑
i=1

λi =
2 c1(f∗ωX/C)

c1(ωC)
(1)

If C is not compact as in the case of Teichmüller curves, one has to take the Deligne
extension of f∗ωX/C and the canonical bundle ωC of the completion C instead.

Kontsevich’s observation can be extended to ball quotients, since they are Kähler-
Einstein manifolds as in the one-dimensional case. More precisely, we have the
following result, which we state for abstract variations of Hodge structures.

Theorem 1.1. Suppose that V is a real polarized variation of Hodge structures of
weight 1 over a ball quotient B = Bn/Γ of constant curvature −4, where Γ is a
torsionfree lattice in PU(1, n). Let B be a smooth compactification of B with normal
crossing boundary divisor ∆, and assume that the local monodromy of V about ∆ is
unipotent. Then the Lyapunov spectrum of V has the following properties.

i) Normalization. If VC = V⊗R C has an irreducible summand which is
uniformizing, then the top Lyapunov exponent is one.

ii) Duplication. If an R-irreducible direct summand W of V is reducible over
C, then each Lyapunov exponent of W has even multiplicity.

iii) Zero exponents for non-real factors. If an irreducible summand WC
of VC has signature (p, q), then at least 2|p− q| of the Lyapunov exponents
corresponding to WC are zero.

iv) Partial sums are intersection numbers. Let W be a direct summand
of rank 2k in the decomposition of V. Then the positive Lyapunov exponents
λ1, . . . , λk of W satisfy

(2) λ1 + · · ·+ λk =
(n+ 1) c1(E1,0). c1(ωB)n−1

c1(ωB)n
,

where ωB =
∧n

Ω1
B

(log ∆), and E1,0 is the Deligne extension of W1,0 ⊂
W⊗OB.

Commensurability invariants. Due to their construction via families of curves,
all the ball quotients arising from cyclic coverings come with a Q-VHS that contains
a uniformizing sub-VHS. The Galois conjugates of this sub-VHS constitute the
primitive part that we associate to such a ball quotient (see Definition 2.4 for
the precise statement). The local system of the primitive part only depends on
the lattice as it corresponds to the sum of the representations Γ → Γσ given by
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Galois conjugation. On the other hand, the Hodge decomposition is a priori not
an intrinsic datum of the lattice. However, it is unique if it exists. This is shown
in Theorem 4.3 using the notion of modular embeddings. Informally, a modular
embedding is the collection of the equivariant period maps associated with the
different representations Γ→ Γσ. Using this terminology, we show in Section 4:

Theorem 1.2 (see Theorem 4.8). The Lyapunov spectrum of the primitive part
is a commensurability invariant among lattices in PU(1, n) that admit a modular
embedding.

The right hand side of (2) can also be generalized to give a new class of com-
mensurability invariants. In general, for lattices as in Theorem 1.2 the ratios of the
form

(3)
c1(E1,0)a. c1(ωB)b

c1(ωB)n

for all (a, b) with a+ b = n are natural invariants of the commensurability class of
Γ. Here the E1,0 correspond to irreducible summands in the primitive part of the
VHS associated with Γ. We refer to Corollary 4.5 for the precise statement.

The second part of this paper shows that for all presently known commensurability
classes of ball quotients all individual Lyapunov exponents in the primitive part can
be calculated using Theorem 1.1 and local computations.

First of all, arithmetic lattices are of little interest in this context. As a conse-
quence of Theorem 1.1 we show in Proposition 5.1 that for an arithmetic lattice the
primitive Lyapunov spectrum is maximally degenerate, i.e. it consists of {+1, 0,−1}
only and the number of +1 is determined by the signature of the Hodge inner
product.

The non-arithmetic examples are much more interesting. We calculate the
individual Lyapunov exponents of the primitive part for all known non-arithmetic
examples in Theorem 7.1. We state a particularly interesting case here.

Theorem 1.3. Let f : X → B0 = (P1)5 \ (diagonals) be the family of cyclic
coverings of P1 given by

(4) y12 = (x− x1)3(x− x2)3(x− x3)5(x− x4)6(x− x5)7,

respectively by

(5) y12 = (x− x1)4(x− x2)4(x− x3)4(x− x4)5(x− x5)7.

Let L be the uniformizing direct summand of R1f∗C that when extended to a suitable
compactification B of B0 exhibits B as a non-compact orbifold ball quotient. Then
the Lyapunov exponents of the primitive part P are given by

1, 5
17 , 0,−

5
17 ,−1, respectively 1, 7

22 , 0,−
7
22 ,−1,

where P in this case is the C-subvariation associated with the direct sum of the
Galois conjugates of the Q(ζ12)-form of L.

As a corollary to this theorem we obtain that the two associated lattices are not
commensurable to each other. The full commensurability statement mentioned at
the beginning is given in Corollary 7.2.

In order to prove Theorem 7.1, we reduce the calculation of c1(E1,0) to the
computation of local invariants near the ’boundary divisors’, where two of the
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branch points collapse. It turns out that it suffices to compute the cokernel of
Kodaira-Spencer maps near these boundary divisors and this will be done by a
local analysis of hypergeometric integrals. As final piece of information we need the
intersection rings and Chern classes of the tangent bundle of the moduli spaces of
weighted stable curves (or their quotients by finite groups in the case (ΣINT)).

Naturally, one would also like to calculate the Lyapunov exponents of the non-
primitive part of the VHS for a cyclic covering. However, one runs into the following
problem.

Remark 1.4. The problem of calculating the Lyapunov exponents of the whole
variation of Hodge structures R1f∗C of a family of cyclic coverings branched over
N ≥ 5 points is not well-defined in any of the non-arithmetic cases, since there
always exists a direct summand that does not extend to the ball, i.e. whose period
map is not defined on Bn (see Example 6.5). For a discussion of the case N = 4, we
refer to [BM10], [Wri12], and [EKZ11].

Orbifold Euler numbers. After a first version of this paper was circulated, Mc-
Mullen pointed out to us that one can define another invariant for non-arithmetic ball
quotients coming from cyclic coverings, the relative orbifold Euler numbers. For each
Galois conjugate Γσ of Γ, there is a hyperbolic cone manifold Bσ (with Bid = Bn/Γ
being the usual orbifold ball quotient). The relative Euler numbers are then defined
as the collection eorb(Bσ)/ eorb(Bid). The precise definition, entirely combinatorial,
is given in Section 8 and an explicit formula is stated in Proposition 8.3. McMullen’s
observation was that the two sets of invariants, positive Lyapunov exponents and
relative orbifold Euler numbers, agree for one-dimensional ball quotients, but differ
in dimension two 2. Our next result, a simplified restatement of Corollary 8.2 gives
the explanation.

Theorem 1.5. Let Lσ be a Galois conjugate of the uniformizing VHS L of a family
of cyclic coverings. Suppose n = 2 and that the polarization of Lσ has signature
(1, 2). Then

(6)
eorb(Bσ)

eorb(Bid)
=

(
3 · c1(E1,0)

)2
c1(ωB)2

.

For the families of curves given by (4) and (5) the set of relative orbifold Euler
numbers is

1, 1
17 , respectively 1, 1

22

Said differently, the sum of Lyapunov exponents corresponds to the case (1, n− 1)
of the invariants in (3) while the orbifold Euler characteristics correspond to the
case (2, 0).

To prove Theorem 1.5 we show in Theorem 8.1 that Bσ is a log ball quotient, i.e.
for an appropriate choice of weights on boundary divisors this log manifolds attains
the upper bound in Langer’s logarithmic version of the Bogomolov-Miyaoka-Yau
inequality ([Lan03]).

2The values that McMullen calculated (meanwhile also available in the preprint ’The Gauss-
Bonnet theorem for cone manifolds and volumes of moduli spaces’ on his web page) match with
our Corollary 8.2. They are included in the table in Theorem 7.1.
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Structure of the paper. The plan of the paper is as follows. In Section 2 we
provide background information about ball quotients, Lyapunov exponents and
variations of Hodge structures. Section 3 contains the proof of Theorem 1.1. Section 4
contains the definition of modular embeddings for ball quotients and the proof of
commensurability invariance of the primitive Lyapunov spectrum. The arithmetic
case is quickly discussed in Section 5. The basic facts about cyclic covers and those
cases that give rise to (non-arithmetic) ball quotients are recalled in Section 6. This
section also contains the description of intersection rings of these ball quotients.

Acknowledgments. The authors thank Jürgen Wolfart for useful comments on
modular embeddings, Simion Filip for useful comments on the proof of Lemma 2.7,
Curt McMullen for asking about the relation between Lyapunov exponents and
orbifold Euler numbers and the referees for their valuable suggestions to improve
the exposition of the paper.

2. Background

2.1. The complex ball and its Kähler structure. We first collect some well-
known facts about the Kähler structure of ball quotients. We carefully carry along
the dependence on the curvature in order to have a consistent normalization in
Theorem 1.1 i). Let C1,n be Cn+1 equipped with the following hermitian pairing.
For W = (W0,W ) and Z = (Z0, Z) ∈ Cn+1 we let

〈W,Z〉1,n = W0Z0 − (W,Z),

where (W,Z) =
∑n
i=1WiZi. Then HnC is the space of lines where the hermitian

pairing is positive definite. We may identify HnC with

Bn = {z = (z1, . . . , zn) :
∑
|zi|2 < 1}

via the map f : Bn → P(C1,n), z 7→ (1 : z).
Bn is naturally endowed with a Kähler structure, whose Kähler form in these

coordinates is given by

ωhyp = 2κi∂∂ log( 1
2 〈f(z), f(z)〉1,n)

=
2κi

(1− (z, z))2


 n∑
j=1

z̄jdzj

 ∧( n∑
k=1

zkdz̄k

)
+ (1− (z, z))

n∑
j=1

dzj ∧ dz̄j


with κ > 0 [Gol99]. Its holomorphic sectional curvature is −2

κ . Setting κ = 1
2 , we

obtain the metric of Theorem 1.1.
The corresponding Riemannian metric is given by

ghyp =
2κ

(1− (z, z))2


 n∑
j=1

z̄jdzj

( n∑
k=1

zkdz̄k

)
+ (1− (z, z))

n∑
j=1

dzjdz̄j

 .

The volume form is

dvolBn = 1
n!ω

n
hyp =

(2κi)n

(1− (z, z))n+1
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.(7)
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2.1.1. The Laplacian on the complex ball. Let ∆hyp be the Laplacian for the
Riemannian metric on Bn. It is given by

∆hyp = 1
κ (1− (z, z))

 n∑
i=1

∂2

∂zi∂z̄i
−

n∑
i,j=1

ziz̄j
∂2

∂zi∂z̄j

 .(8)

Lemma 2.1. If F is a smooth function on the ball, we have

∆hyp(F ) · dvolBn =
2i

(n− 1)!
· ∂∂̄F ∧ ωn−1

hyp(9)

Proof. Since Bn is Kähler, there is a coordinate system w1, . . . , wn centered at
x ∈ Bn such that in the fiber over x

ωx = 2κi

n∑
j=1

dwj,x ∧ dw̄j,x, and ∆hyp(F )x = 1
κ

n∑
i=1

∂2F

∂wi∂w̄i

∣∣∣
x
.

Therefore, it suffices to prove (9) for this particular coordinate system, which is a
straightforward calculation. �

2.1.2. Geodesic polar coordinates. We use the parametrization of Bn by ge-
odesic polar coordinates centered at x ∈ Bn. Let θ = (θ1, . . . , θ2n−1) be a local
parametrization of T 1

xBn ⊂ TxBn. Then the map

expx : TxBn → Bn, (t, θ) 7→ expx(tθ1, . . . , tθ2n−1)

parametrizes Bn by geodesic polar coordinates.
The volume form on Bn written in geodesic polar coordinates is

dvolBn =
(4κ)n

2
√

2κ
sinh2n−2

(
t√
2κ

)
sinh

(
2t√
2κ

)
dtdσ,

where dσ denotes the volume form on T 1
xBn. This follows from (7) and the PU(1, n)-

invariance, by which we can reduce the computation to x = 0. Further, we use the
equality (

i
2

)n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

and
dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn = r2n−1 dr dσ.

Moreover, the Euclidean radius r is related to the hyperbolic radius t by r =
tanh(t/(

√
2κ)). Hence the formula follows using cosh(x) sinh(x) = 1

2 sinh(2x).

Moreover, we need the volume of Bnt = Bnt (x) =
{
z ∈ Bn | dhyp(x, z) < t

}
. It is

given by

vol(Bnt ) =

∫ t

0

∫
T 1
xBn

dvolBn =
(4κ)nσ2n−1

2n
sinh2n

(
t√
2κ

)
.

Here σ2n−1 is the Euclidean volume of T 1
xBn.

Finally, by [Hel94] the Laplacian on Bn written in geodesic polar coordinates
centered at 0 is

∆hyp =
∂2

∂t2
+

1

A(t)

dA

dt

∂

∂t
+ ∆St(0)(10)

where A(t) is the area of the sphere St(0) ⊂ Bn of radius t centered at 0. Here
∆St(0) is the Laplacian on St(0) for the Riemannian metric induced from the one
on Bn.
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We have

A(t) =
d

dt
vol(Bnt ) =

(4κ)nσ2n−1

2
√

2κ
sinh2n−2( t√

2κ
) sinh( 2t√

2κ
).

Therefore the factor in front of ∂/∂t in (10) is

A(t)−1A′(t) = A(t)−1 · (4κ)n−1σ2n−12 sinh2n−2( t√
2κ

)
(
2n cosh2( t√

2κ
)− 1

)
=

√
2κ

κ

(
n coth(2 t√

2κ
) +

n− 1

sinh(2 t√
2κ

)

)
The following version of Green’s formula was used in [For02] for the hyperbolic

plane. It carries over to higher dimension.

Lemma 2.2. Let x ∈ Bn, let Λ : Bn → R be a smooth function, and let L be a
smooth solution to the Poisson equation ∆L = Λ. Then

1

σ2n−1

∂

∂t

∫
T 1
xBn

L(expx(t, θ))dσ =

√
2κ

2n
tanh

(
t√
2κ

)
· 1

vol(Bnt )

∫
Bnt (x)

Λ dvolBn .

Proof of Lemma 2.2. By homogeneity, we can assume x = 0. Proceeding in exactly
the same way as in [For02], we set

Lr(t) =
1

σ2n−1

∫
T 1

0 Bn
L(exp0(t, θ)) dσ and Λr(t) =

1

σ2n−1

∫
T 1

0 Bn
Λ(exp0(t, θ)) dσ

Then since ∆St(0)Lr = 0 as it involves only partial derivatives in θ, we have

∆hypLr(t) =
∂2

∂t2
Lr(t) + f(t)

∂

∂t
Lr(t) = Λr(t).(11)

Thus u(t) = ∂
∂tLr(t) satisfies a first-order ODE, whose solution is

u(t) =
1

sinh2n−2( t√
2κ

) sinh( 2t√
2κ

)

∫ t

0

Λr(τ) sinh2n−2( τ√
2κ

) sinh( 2τ√
2κ

) dτ(12)

Therefore,

1

σ2n−1
u(t) =

(4κ)n

2n
sinh2n( t√

2κ
) · 1

vol(Bnt )
u(t)

=

√
2κ

n
·

sinh2( t√
2κ

)

sinh( 2t√
2κ

)
· 1

vol(Bnt )
·

·
∫ t

0

∫
T 1

0 Bn
Λ(exp0(τ, θ))

(4κ)n

2
√

2κ
sinh2n−2( τ√

2κ
) sinh( 2τ√

2κ
) dτ dσ

=

√
2κ

2n
tanh( t√

2κ
)

1

vol(Bnt )

∫
Bnt

Λ dvolBn

�
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2.2. Weight one variations of Hodge structures (VHS). The first cohomology
of a complex algebraic curve X naturally carries a Hodge decomposition H1(X,C) =
H1,0⊕H0,1 into the direct sum of classes of holomorphic and antiholomorphic forms.
The generalization of the Hodge decomposition to families of curves or more generally
to families of compact Kähler manifolds is abstracted by the notion of a variation
of Hodge structres. Below, we collect the basic definitions needed. For simplicity,
we state everything for weight one only. A general reference for this section is
[CMSP03].

Let K ⊂ R be a field, and let W be a K-vector space. By a K-Hodge structure
(of weight one) on W , we understand a decomposition W ⊗K C = W 1,0 ⊕W 0,1,

such that W 1,0 = W 0,1. We extend this notion to K = C by dropping the condition
that W 1,0 = W 0,1.

Let B be a base manifold which is the complement in the projective variety Y of
a normal crossing divisor ∆. A (weight one) K-variation of Hodge structures over
B consists of a K-local system W on B and a C∞-decomposition

W⊗K OB =W1,0 ⊕W0,1

into a holomorphic (resp. antiholomorphic) subbundle W1,0 (resp. W0,1) that
induces fiber by fiber a Hodge structure of weight 1. Note that for higher weight,
there is an additional transversality condition, which is vacuous for weight one.

A C-VHS W is called polarized, if there is a locally constant hermitian form
ψ on W, for which the decomposition W1,0 ⊕ W0,1 is orthogonal, and which is
positive definite on W1,0 and negative definite on W0,1. Consequently, its signature
is (rkW1,0, rkW0,1). This indefinite hermitian form will be referred to as Hodge
inner product. If K ⊂ R, we require instead the existence of a non-degenerate,
locally constant, antisymmetric form Q(·, ·) on W, which is zero on W1,0⊗W1,0

and on W0,1⊗W0,1 and such that ip−qQ(v, v) > 0 for every non-zero v ∈ Wp,q.
The indefinite hermitian form on WC = W⊗K C is then given by3

ψ(v, w) := i
2Q(v, w)

If K ⊂ R, then we may write every element w ∈ W as w = Re (ω) for some
ω ∈ W1,0 and define the Hodge norm as ‖w‖ = ψ(ω, ω)1/2. We extend this norm to
WC = WR+iWR as orthogonal direct sum and also to C-sub-VHS. This Hodge norm
will be used throughout when talking about Lyapunov exponents. In particular, for
v ∈WC we have

‖v‖2 = ‖Re (v)‖2 + ‖iIm (v)‖2 = ψ((v + v)1,0, (v + v)1,0) + ψ((v − v)1,0, (v − v)1,0)

= 2(ψ(v1,0, v1,0) + ψ(v0,1, v0,1))

Suppose that we are given a polarized R-VHS W that splits over C as WC = V⊕V
into C-VHS. Since ψ(v, v) = −ψ(v, v), the above computation shows that we may
also flip the sign of ψ on the negative definite part V0,1 in order to obtain a positive
hermitian form that computes the Hodge norm of vectors in V:

‖v‖2 = 2(ψ(v1,0, v1,0)− ψ(v0,1, v0,1)).

If f : X → B is a family of curves, then W = R1f∗K is a K-VHS of weight one,
polarized by the natural intersection pairing on cohomology.

3Be aware that our definition of ψ parallels the one used for the area of a flat surface (see e.g.

[EKZ14]). In Hodge theory (e.g. [Sch73]), the factor 1
2

is usually omitted.
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Let W be a C-vector space and let ψ be a polarization. The period domain
Per(W ) is the classifying space of all C-Hodge structures polarized by ψ that can
be put on W . Analogously, we define the period domain for K-Hodge structures on
the K-vector space W , polarized by the K-bilinear form Q.

Note that for weight one, Per(W ) is always a hermitian symmetric domain. In
fact, weight one C-Hodge structures of signature (1, n) are parametrized by the
complex ball Bn, and weight one R-Hodge structures are parametrized by the Siegel
upper halfspace HdimW .

Let b ∈ B be a base point. A polarized VHS W defines a period map p : B̂ →
Per(Wb) from the universal cover of B to the period domain Per(Wb) that records
the position of the (1, 0)-subspace in the fibers of W. The period map is only
well-defined on the universal cover, since the identification of the fibers of W by
parallel transport depends on the chosen path, and in fact produces an action of
the fundamental group π1(B, b) on Wb, preserving the polarization. The group
homomorphism ρ : π1(B, b) → Aut(Wb, ψb) is called monodromy representation.
There is an induced action of π1(B, b) on Per(Wb) and the period map is equivariant
with respect to the actions of π1(B, b) on the universal cover by deck transformations
and on Per(Wb). In particular, if K denotes the Kernel of ρ, then p drops to a

map B̂/K → Per(Wb). In the sequel, we will often omit the base point from the
notation, if its choice does not matter.

Definition 2.3. A VHS is called uniformizing, if the period map is an isomorphism.

A uniformizing VHS is unique up to isomorphism. Indeed, if Wi, i = 1, 2 are
uniformizing VHS on B, we obtain a group isomorphism Γ1 → Γ2 of the monodromy
groups and a biholomorphic map Per(W1)→ Per(W2) equivariant with respect to
this group isomorphism, which yields W1

∼= W2 as VHS.
Suppose now that V is a Q-VHS and that V⊗Q C contains a uniformizing sub-

VHS W of signature (1, n). The assumption on the signature implies that W is
irreducible. Recall also that by Deligne’s semisimplicity theorem [Del87, Prop. 1.13],
V =

⊕
iWi⊗Ei, where Wi are irreducible, polarized C-VHS and Ei are C-vector

spaces.

Definition 2.4. We define the primitive part of a Q-VHS V to be the direct sum of
those Wi⊗Ei, where Wi is isomorphic as a local system to Wσ with σ ∈ Aut(C/Q).

It is clear from the definition that the primitive part does not depend on the
choice of a uniformizing sub-VHS, since any two such are isomorphic. Thus dropping
the dependence on W will cause no confusion. The primitive part is fixed by any
element of Aut(C/Q), and thus a Q-sub-VHS of V.

For the application below we explicit the (unique up to isomorphism) uniformizing
VHS U over Bn together with the polarization in terms of the form 〈·, ·〉1,n used
above. Over Bn we represent a constant C-local system of rank n+ 1 by row vectors
and define U1,0

z as the line generated by z = (1, z) in {z} × Cn+1. Let πz denote
the orthogonal projection on the 1, 0-part. Then for v ∈ {z} × Cn+1

1
2‖v‖

2
z = 〈πz(v), πz(v)〉1,n − 〈(1− πz)(v), (1− πz)(v)〉1,n

= −〈v, v〉1,n + 2
|〈v, z〉1,n|2

〈z, z〉1,n
(13)
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2.2.1. The Higgs field. By a theorem of Borel (see e.g.[Sch73, Lemma 4.5]), the
local monodromy about a boundary divisor in ∆ is always quasi-unipotent. In the
sequel we suppose throughout that the monodromy of the local system W about ∆
is already unipotent, or pass to a finite cover where this holds. Then the associated
holomorphic vector bundle W⊗COB has a unique extension due to Deligne [Del70,
Prop. 5.2] to a holomorphic bundle E on Y . The extension E1,0 of W1,0 inside
E is a holomorphic subbundle and we set E0,1 := E/E1,0. Further let Ω1

Y (log ∆)
be the bundle of differential forms on Y with logarithmic poles along ∆; then

ωY =
∧dimB

Ω1
Y (log ∆) is called the log-canonical bundle. The graded piece of the

Gauss-Manin connection is an OY -linear map

τ : E1,0 → E0,1⊗Ω1
Y (log ∆),

called the Higgs field. Its dual is the OY -linear map

τ∨ : E1,0⊗TY (− log ∆)→ E0,1⊗Ω1
Y (log ∆)⊗TY (− log ∆)→ E0,1

obtained by composing with the natural contraction. Another viewpoint on the
same map is the map

τ̃ : TY (− log ∆)→ Hom(E1,0, E0,1)

obtained from τ∨ by tensoring with (E1,0)∗. If p : B̂ → Per(W) denotes the period
map of W, then its differential descends to a sheaf map on B, which is equal to τ̃
restricted to B.

2.3. Lyapunov spectrum for polarized VHS. We quickly recall Oseledec’s
theorem together with some properties

Theorem 2.5 (see e.g. [Rue79]). Let gt : (M,µ)→ (M,µ) be an ergodic flow on a
space M with finite measure µ. Suppose that the action of t ∈ R lifts equivariantly
to a linear flow Gt on some measurable real bundle V on M . Suppose there exists a
(not equivariant) norm ‖ · ‖ on V such that the functions

x 7→ sup
t∈[0,1]

log+ ‖Gt‖x and x 7→ sup
t∈[0,1]

log+ ‖G1−t‖gt(x)(14)

are in L1(M,µ). Then there exist real constants λ1 ≥ · · · ≥ λk and a decomposition

V =

k⊕
i=1

Vλi

by measurable vector subbundles such that, for almost all m ∈ M and all v ∈
(Vλi)m \ {0}, one has

(15) λi = lim
t→±∞

1

t
log ‖Gt(v)‖.

We call the values λi, repeated with multiplicity dimVλi the set of Lyapunov
exponents or Lyapunov spectrum of (M,µ, V, gt).

Suppose that V carries a symplectic structure preserved by the flow. Then the
Lyapunov exponents are symmetric with respect to zero, i.e. λk+1−i = −λi. The
positive Lyapunov spectrum is by definition the first half of the symmetric Lyapunov
spectrum.

The Vλi do not change if ‖ · ‖ is replaced by another norm of ‘comparable’ size.
More precisely,
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Lemma 2.6. In the above theorem, suppose M is a locally compact topological
space and µ a regular Borel measure. Let ‖ · ‖1 and ‖ · ‖2 be norms on V (varying
measurably) such that for both (14) is satisfied. Then the filtrations and the two sets
of Lyapunov exponents coincide.

Proof. The function m 7→ φ(m) = sup‖v‖2,m=1 ‖v‖1,m is measurable. Thus, by
Lusin’s theorem, there is a compact subset K of positive measure and a C =
C(K) > 0 such φ(m) ≤ C for all m ∈ K. By Poincaré recurrence, we find for
almost all m an increasing sequence of times t1, t2, . . . with lim tj →∞ such that
gtj (m) ∈ K for all j. Now for almost all m and v ∈ Vm \ {0},

lim
t→∞

1

t
log ‖Gt(v)‖1 = lim

j→∞

1

tj
log ‖Gtj (v)‖1 ≤ lim

j→∞

1

tj
log(C · ‖Gtj (v)‖2)

= lim
j→∞

1

tj
log ‖Gtj (v)‖2 = lim

t→∞

1

t
log ‖Gt(v)‖2

By symmetry, we also obtain the other inequality, hence

lim
t→∞

1

t
log ‖Gt(v)‖1 = lim

t→∞

1

t
log ‖Gt(v)‖2,

and this implies the claim. �

In all the applications below, the manifold M will be the unit tangent bundle
T 1B of a ball quotient B, gt will be the geodesic flow, which is well-known to be
ergodic, and µ will be the push-forward of Haar measure on PU(1, n). V will be the
pullback along T 1B → B of the vector bundle associated with a polarized R-VHS
V, and will be endowed with the Hodge norm. The flat connection then provides
a lift Gt of the geodesic flow gt on the base T 1B. We first check the integrability
condition.

Lemma 2.7. In this setting, the integrability condition (14) holds. More precisely,
we have ∣∣ d

dt log ‖Gt(v)‖
∣∣ ≤ 1√

2κ
.(16)

Proof. We first argue that it suffices to show (16). It clearly suffices to bound
log ‖Gt(v)‖ for every v of norm 1 by a constant depending continuously on t ∈ R.
Assuming (16), we have∣∣log ‖Gt(v)‖

∣∣ =
∣∣∫ t

0

d
ds log ‖Gs(v)‖ds

∣∣ ≤ ∫ t

0

∣∣ d
ds log ‖Gs(v)‖

∣∣ ds ≤ t 1√
2κ
.

Let ϑ ∈ T 1B, and let γ : [0, t]→ B be the geodesic with γ′(0) = ϑ. For v ∈ Vϑ, the
lift Gt(v) of the flow is given by a flat section w of V along γ with wϑ = v. We will
use the following formula, which is proved in [FMZ14a, Lemma 2.3] for the case of
the Teichmüller geodesic flow; the proof carries over to our situation.

d
dtψ
(
w1,0
γ(t), w

1,0
γ(t)

)∣∣∣
t=t0

= 2 · Re
(
ψ
(
τ̃γ′(t)(w

1,0
γ(t)), w

0,1
γ(t)

))∣∣∣
t=t0

.

Using ‖wγ(t)‖2 = 4ψ(w1,0
γ(t), w

1,0
γ(t)), we have

d
dt log ‖Gt(v)‖

∣∣∣
t=t0

= 2‖Gt0(v)‖−2 · d

dt
ψ
(
w1,0
γ(t), w

1,0
γ(t)

)∣∣∣
t=t0

= 4‖Gt0(v)‖−2 · Re
(
ψ
(
τ̃γ′(t0)(w

1,0
γ(t0)), w

0,1
γ(t0)

))
,
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hence by applying the Cauchy-Schwarz inequality

|ψ(x, y)| ≤ 1√
2
‖x‖ · 1√

2
‖y‖

on the (0, 1) subspace and using the submultiplicativity of operator norm ‖ · ‖op on
Hom(V 1,0, V 0,1)∣∣ d

dt log ‖Gt(v)‖
∣∣∣
t=t0

∣∣ ≤ 2‖Gt0(v)‖−2 · ‖τ̃γ′(t0)(w
1,0
γ(t0))‖ · ‖w

0,1
γ(t0)‖

≤ 2‖Gt0(v)‖−2 · ‖τ̃γ′(t0)‖op · ‖w1,0
γ(t0)‖ · ‖w

0,1
γ(t0)‖

≤ ‖τ̃γ′(t0)‖op.

The map τ̃ can be identified with the derivative of the period map p : Bn → HrkV
associated with V. We may use the realization of HrkV as symmetric matrices, so
a tangent vector like τ̃γ′(t0) is also given by a symmetric matrix. Acting by an
appropriate block diagonal element in the symplectic group, we may suppose that
τ̃γ′(t0) is given by a diagonal matrix. To bound its operator norm it suffices to bound
the operator norm of the individual diagonal entries. Let ri : HrkV → H be the
projection on the i-th diagonal element and pi = ri ◦ p : Bn → H. In this notation,
we want to bound the operator norm of dri(τ̃γ′(t0)) = ( dpi)(γ

′(t0)).
For this purpose we want to apply a generalization of the Schwarz-Pick Lemma

(e.g. [Roy80, Theorem 2]) to the composition pi. The ball Bn is a hermitian
manifold of constant negative holomorphic sectional curvature k0, in fact with our
normalization we have k0 = −2

κ . Suppose we take the hermitian metric of constant
holomorphic sectional curvature K0 on H and let ‖ · ‖H be the associated norm. In

this situation, Royden’s theorem states that ‖ dpi‖H ≤
√
k0/K0. Now it suffices to

check that for K0 = −4 the operator norm on the tangent bundle and the norm
‖ · ‖H coincide.

To do so, we use the unit disk model H ∼= B1 of hyperbolic space. The norm
‖ · ‖H is given by the hermitian form

h =
2κ

(1− |z|2)2
dz⊗ dz̄, where K0 = −2

κ

and the operator norm on TB1 is induced by the isomorphism TB1 → Hom(E1,0, E0,1)
coming from the Higgs field τ̃ = τ̃B1 of the uniformizing VHS on B1. Here,
E = B1 × C2 is the trivial bundle with trivial connection

∇(f1e1 + f2e2) = df1⊗ e1 + df2⊗ e2

and indefinite hermitian form ψ(v, w) = v1w̄1 − v2w̄2 with respect to the standard
basis {e1, e2}. E1,0 is the holomorphic subbundle with fiber E1,0

z = C(e1 + ze2) and
E0,1 is its orthogonal complement with fiber E0,1

z = C(z̄e1 + e2). The norm on E1,0

and E0,1 is the one induced by restricting ψ and flipping the sign on E0,1, i.e.

‖λ(e1 + ze2)‖2 = |λ|2(1− |z|2) = ‖λ(z̄e1 + e2)‖2.
For the identification TB1 → Hom(E1,0, E0,1), we first consider the map

∂z 7→
(
λ(e1 + ze2) 7→ ∇∂z (λ(e1 + ze2)) = λze1 + (λ+ zλz)e2

)
,

where λz = ∂λ
∂z . The orthogonal projection to E0,1 is given by

f1e1 + f2e2 7→ψ(f1e1 + f2e2, z̄e1 + e2) · ψ(z̄e1 + e2, z̄e1 + e2)−1 · (z̄e1 + e2)

= 1
|z|2−1 (f1z − f2)(z̄e1 + e2),
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and the Higgs field is the composition of these two maps. Thus,

τ̃(∂z)(λ(e1 + ze2)) = 1
|z|2−1 (λzz − (λ+ zλz))(z̄e1 + e2)

= λ
1−|z|2 (z̄e1 + e2)

Hence, the operator norm of τ̃(∂z) is given by

‖τ̃(∂z)‖ =
‖σ(∂z)(λ(e1 + ze2))‖
‖(λ(e1 + ze2)‖

=
|λ|
√

(1− |z|2)

(1− |z|2)
· |λ|−1(

√
1− |z|2)−1

=
1

1− |z|2

Therefore, τ̃ is an isometry iff κ = 1
2 , which proves the claim. �

The hypothesis of Oseledec’s theorem holds verbatim for VC and for the summands
of a decomposition of the VHS into VC = ⊕Wi, replacing Siegel upper-half space by
the respective period domain for the polarized VHS. In particular, it applies to the
primitive part PC ⊂ VC. We call the corresponding part of the Lyapunov spectrum
the primitive Lyapunov spectrum.

3. Lyapunov exponents of ball quotients: Generalities

From now on B will be a ball quotient, i.e. the quotient of Bn by some cofinite
discrete subgroup Γ ⊂ PU(1, n). In this section we prove the general results
announced as Theorem 1.1.

3.1. Normalization. Recall the construction and the metric of the uniformizing
local system U from Section 2.2. The following proposition comprises the statement
of Theorem 1.1 i).

Proposition 3.1. The Lyapunov exponents of a uniformizing polarized VHS U are

λ1, λ1, 0, . . . , 0︸ ︷︷ ︸
2n−2

,−λ1,−λ1

where λ1 = 1√
2κ

, and the Lyapunov exponents of any polarized VHS V on B are all

bounded by λ1.

Proof. We can lift the whole situation to the universal cover and look at the geodesic
flow on T 1Bn acting on Bn × Cn+1 endowed with the metric from Section 2.2.
Moreover, it suffices to compute the Lyapunov exponents for the point (0, 1√

2κ
e1) ∈

T 1Bn since PU(1, n) acts transitively on T 1Bn and the measure µT 1Bn is invariant
under this action. The unit speed geodesic flow starting at (0, 1√

2κ
e1) is given by

gt · (0, 1√
2κ
e1) = (tanh

(
t√
2κ

)
e1, (1− tanh2

(
t√
2κ

)
) 1√

2κ
e1)

Since the local system is trivial, the geodesic flow acts trivially on the fibers of
T 1Bn ×Cn+1. However, the norm in this bundle varies. Now let x = (x1, . . . , xn+1)
in the fiber over (0, 1√

2κ
e1). Set zt = (1, zt), where zt is the projection of gt·(0, 1√

2κ
e1)

to Bn. By (13),

‖Gt · x‖2 = ‖x‖2zt = −2〈x, x〉1,n + 4|〈x, zt〉1,n|2 · (〈zt, zt〉1,n)−1

= −2〈x, x〉1,n + 4|x1 cosh
(

t√
2κ

)
− x2 sinh

(
t√
2κ

)
|2
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since

〈zt, zt〉1,n = 1− tanh2
(

t√
2κ

)
= cosh−2

(
t√
2κ

)
and

〈x, zt〉1,n = x1 − x2 tanh
(

t√
2κ

)
.

As cosh(α)± sinh(α) = e±α, we see that

V λ1 = [(1,−1, 0, . . . , 0), (i,−i, 0, . . . , 0)]R

V 0 = {x ∈ Cn,1|x1 = x2 = 0}

V −λ1 = [(1, 1, 0, . . . , 0), (i, i, 0, . . . , 0)]R

is an orthogonal decomposition of the fiber of Bn × Cn+1 over (0, 1√
2κ
e1) which

realizes the Lyapunov exponents.
The second claim follows from Lemma 2.7, and its proof. First, we can assume

V to be an R-VHS, since we otherwise consider the real form of V⊕ V, which has
the same Lyapunov exponents as V (but possibly with different multiplicity). With
curvature k0 = −2

κ on the ball, we have the bound

1
t log ‖Gt(v)‖ = 1

t

∫ t

0

d
ds log ‖Gs(v)‖ ds ≤ 1√

2κ
.

�

3.2. Duplication. When working with C-variations, there are two duplication
phenomena of the Lyapunov spectrum. The first one is obvious from the fact that
in a normed C-vector space V , a vector v 6= 0 and iv are R-linearly independent and
have the same norm. The second one occurs when an R-VHS becomes reducible
over C.

Proposition 3.2. Let WR be an irreducible direct summand as in Theorem 1.1
that splits after tensoring with C. Then each Lyapunov exponent of WR occurs with
even multiplicity.

Proof. We have WR⊗C = V⊕ V with a C-variation V. Therefore, the Lyapunov
spectrum of W⊗C is the union of the two spectra of V and V, and is the spectrum
of WR with each exponent occurring with twice the multiplicity. Since ‖v‖ = ‖v‖
for each section v of V, and Gt · v = Gt · v, it follows that V and V have the same
Lyapunov spectrum, and each individual exponent occurs with even multiplicity
because of the first duplication phenomenon. �

3.3. Zero exponents. This result is probably well-known, it was observed for the
Teichmüller geodesic flow in [FMZ14b] and we sketch their argument.

Proof of Theorem 1.1 iii). First, with respect to the indefinite hermitian form ψ,
the Oseledec subspaces Vλi are isotropic unless λi = 0 and pairwise orthogonal
unless λi = −λj . Indeed,

|Q(vi, vj)| ≤ c(K)‖vi‖‖vj‖

on any compact set K of positive measure with a uniform constant depending only
on K, and

‖Gt · vi‖‖Gt · vj‖ ∼ exp((λi + λj)t),
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which tends to zero for t→∞ or t→ −∞. Since gt returns to K for a sequence of
times tk →∞ or tk → −∞,

Q(vi, vj) = Q(Gtk · vi, Gtk · vj)→ 0.

The key observation is now that an isotropic subspace in a vector space with an
indefinite hermitian form of signature (p, q) has at most dimension min(p, q). Since
both

⊕
λi>0 Vλi and

⊕
λi<0 Vλi are isotropic, hence of dimension at most min(p, q),

the complement V0 has to be of dimension at least |p− q|. �

Remark. The key observation of the proof also implies that the that the Lyapunov
spectrum is symmetric with respect to 0 [FMZ14b, Lemma A.3]. Non-degeneracy
of the Hodge inner product implies that the Lyapunov spectrum containing λi
also contains −λi. For λi 6= 0, Vλi ⊕ V−λi is an orthogonal factor of the Oseledec
decomposition, both of whose summands are isotropic, and hence have the same
dimension. Therefore λi = −λp+q+1−i.

3.4. Partial sums are intersection numbers. We restate Part iv) of Theorem 1.1
for holomorphic sectional curvature −2

κ . Consider a polarized R-VHS WR on a ball
quotient B = Bn/Γ as in Theorem 1.1 iv).

Theorem 3.3. The positive Lyapunov exponents λ1, . . . , λk of WR satisfy

λ1 + · · ·+ λk =
1√
2κ
·

(n+ 1) c1(E1,0). c1(ωB)n−1

c1(ωB)n
.

Before we engage in the proof, a few remarks are in order. Almost all ingredients
are just parallel to [KZ97], see also [For02], explained in more detail in [BM10] for
the curve case and [EKZ14] in general. There are a few modifications however.

First, we remark that the formula (17) is valid not only for (flat) surfaces, but for
general weight one VHS. Second, the Laplacian on the n-ball replaces the Laplacian
on the one-dimensional ball without major difficulties. Finally, at a crucial step we
use that ball quotients are Kähler-Einstein manifolds to trade the first Chern class
of the cotangent bundle for the class of the Kähler metric.

To start with the details, let Ω = 1
k! ∧

kQ ∈ (
∧2kWC)∗. Consider a local section L

of
∧kW over an open set U that is given by a decomposable vector L = v1∧· · ·∧vk.

Such a vector is called Lagrangian, if the symplectic form Q(vi, vj) = 0 for all pairs
(i, j). For a Lagrangian decomposable vector we claim that the Hodge norm can be
calculated (see [EKZ14] and in more detail in [GH14]) by the formula

(17) ‖L‖2 =
|Ω(ω1 ∧ · · · ∧ ωk ∧ v1 ∧ · · · ∧ vk)| · |Ω(v1 ∧ · · · ∧ vk ∧ ω̄1 ∧ · · · ∧ ω̄k)|

|Ω(ω1 ∧ · · · ∧ ωk ∧ ω̄1 ∧ · · · ∧ ω̄k)|
,

where ω1, . . . , ωk is a local basis of W1,0. Note that the right hand side does not
depend on the choice of this basis.

Lemma 3.4. Given a decomposable Lagrangian section L of
∧kW as above over

some open subset U of B, we have on U the equality of functions

Φ := ∆hyp(log ‖L‖) = − 1
2∆hyp log det(ψ(ωi, ωj))i,j .

Proof. The proof is the same as in [EKZ14] and the other sources above. The
only thing we need to use is that for higher-dimensional balls, too, the hyperbolic

Laplacian is a sum of ∂2

∂i∂j
-derivatives and of ∂2

∂i∂j
-derivatives by (8). Alternatively,
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one can use the proportionality (9) of ∆hyp(log ‖L‖) dvolBn and ∂∂̄ log ‖L‖ ∧ ωn−1
hyp

and the fact that ∂∂̄f = 0 for any holomorphic or antiholomorphic function f . �

Since both sides of the equation do not depend of the choice of the basis we may
consider Φk as a function on the whole of B.

Proof of Theorem 3.3. We first set up some notations. Let T 1B be the unit tangent
bundle, and let Grk(B) be the Lagrangian Grassmannian bundle over B, whose
fiber over x ∈ B consists of the k-dimensional Lagrangian R-vector subspaces of W.
Set

Grk(T 1B) = T 1B ×B Grk(B).

The Lagrangian Grassmannian is a homogeneous space, thus it carries a natural
measure γ. The bundle measure µGrk(T 1B) is then the product measure of γ and the
measure µT 1B on the base. We assume the measure γ, and the measure on the fiber
of T 1B to be normalized to have area 1. Denote again Gt : Grk(T 1B)→ Grk(T 1B)
the lift of the geodesic flow gt : T 1B → T 1B, and let u : Bn → B be the universal
covering map. If ϑ ∈ T 1B, then we denote the coordinate on the base by x(ϑ) ∈ B,
and a lift to the universal cover by x̃(ϑ).

The core of the proof is the following chain of equalities. After averaging over the
whole space, we introduce another average over the unit tangent space at each point.
Then we interchange the integral and the limit; this is possible, since the logarithmic
derivative of the Hodge norm is bounded above by Lemma 2.7. Next, in order to
apply Lemma 2.2, we pass to the universal cover. Then we use Lemma 3.4 to get rid
of the dependence on L. Then we interchange once more limit and integral. Next,
we go back to B and decompose the fiber bundle T ‖·‖≤tB along the fibers of

exp : T ‖·‖≤tB → B.

The preimage of z ∈ B under this map has volume equal to the one of Bnt (z̃), where
z̃ is a lift of z to Bn, since

exp−1(z) = {ϑ ∈ T ‖·‖≤tB | exp(ϑ) = z}

= {ϑ̃ ∈ T ‖·‖≤tBn | exp(ϑ̃) = z̃}

=
⋃

0≤τ≤t

⋃
dhyp(z̃,y)=τ

{y}

Finally, the factor

c1(t) =

√
2κ

2n
tanh

(
t√
2κ

)
· 1

vol(Bnt )

will drop out once we apply Lemma 2.2. In the last line we use that

1

T

∫ T

0

vol(Bnt ) · c1(t) dt =
κ

n
·

log(cosh( T√
2κ

))

T
→ κ

n ·
√

2κ

as T →∞.

vol(B)

k∑
i=1

λi =

∫
Grk(T 1B)

lim
T→∞

1

T

∫ T

0

d

dt
log ‖Gt(ϑ,L)‖ dtdµGrk(T 1B)(ϑ,L)

=

∫
Grk(T 1B)

1

σ2n−1

∫
T 1
x(ϑ)

B

lim
T→∞

1

T

∫ T

0

d

dt
log ‖Gt(θ, L)‖
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dtdσ(θ) dµGrk(T 1B)(ϑ,L)

=

∫
Grk(T 1B)

lim
T→∞

1

T

∫ T

0

1

σ2n−1

d

dt

∫
T 1
x(ϑ)

B

log ‖Gt(θ, L)‖

dσ(θ) dtdµGrk(T 1B)((x, ϑ), L)

=

∫
Grk(T 1B)

lim
T→∞

1

T

∫ T

0

1

σ2n−1

d

dt

∫
T 1
x̃(ϑ)

Bn
log ‖Gt(u(θ̃), L)‖

dσ(θ̃) dtdµGrk(T 1B)(ϑ,L)

=

∫
Grk(T 1B)

lim
T→∞

1

T

∫ T

0

c1(t)

∫ t

0

∫
T 1
x̃(ϑ)

Bn
∆hyp log ‖Gτ (u(θ̃), L)‖

dσ(θ̃) dτ dtdµGrk(T 1B)(ϑ,L)

=

∫
B

lim
T→∞

1

T

∫ T

0

c1(t)

∫ t

0

∫
T 1
x̃
Bn
− 1

2∆hyp log det(ψ(ωi, ωj))i,j(u(expx̃(τ θ̃)))

dσ(θ̃) dτ dtdµB(x)

= lim
T→∞

1

T

∫ T

0

c1(t)

∫
B

∫ t

0

∫
T 1
x̃
Bn
− 1

2∆hyp log det(ψ(ωi, ωj))i,j(u(expx̃(τ θ̃)))

dσ(θ̃) dτ dµB(x) dt

= lim
T→∞

1

T

∫ T

0

c1(t)

∫
T‖·‖≤tB

Φ(expx(v)(v)) dµT‖·‖≤tB(v) dt

= lim
T→∞

1

T

∫ T

0

c1(t)

∫
B

∫
exp−1(z)

Φ(z) dµexp−1(z) dµB(z) dt

=

∫
B

Φ(z) dµB(z) · lim
T→∞

1

T

∫ T

0

c1(t)

∫
exp−1(z)

dµexp−1(z) dt

=

∫
B

Φ(z) dµB(z) · lim
T→∞

1

T

∫ T

0

c1(t) vol(Bnt ) dt

=

∫
B

κ

n
√

2κ
Φ(x) dµB(x).

The measure dµB is given by integrating against the volume form dvolB , which
is the image of dvolBn via the universal cover u : Bn → B. Choose a fundamental
domain F ⊂ Bn for the action of Γ. Let F : B → R be the function

F = log det(ψ(ωi, ωj))i,j .

Then Lemma 2.1 yields

κ

n
√

2κ

∫
B

Φ(x) dµB(x) =
κ

n
√

2κ

∫
F
− 1

2∆hyp(F ◦ u) dvolBn

= − iκ

n!
√

2κ

∫
F
∂∂̄(F ◦ u) ∧ ωn−1

hyp .

A ball quotient B is a Kähler-Einstein manifold, therefore the first Chern class
and the Kähler class are proportional. Moreover, as was remarked by B. Hunt
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[Hun00, Lemma 1.8], the Kähler-Einstein metric also computes the logarithmic
Chern class in case B is not compact. The proportionality constant is determined
from the holomorphic section curvature. By [Huy05, p. 223],

c1(ωB) = [−1/(2π) · Ric(B, ghyp)]

and by [KN96, p. 168]

Ric(B, ghyp) = 1
2 (n+ 1)k0ωhyp,

where k0 = −2
κ is the holomorphic sectional curvature. Thus,

c1(ωB) =
(n+ 1)

2πκ
[ωhyp].

As the metric on W1,0 is good in the sense of Mumford (by Schmid’s SL2(R)-
orbit theorem, e.g. [CKS86, Theorem 5.21]), it computes the first Chern class of
Mumford’s extension of W1,0 to B, which is the same as the Deligne extension, see
e.g. [MVZ12, Lemma 3.4]. Consequently,

c1(E1,0) = i
2π [Θ(∧kW1,0)],

where the curvature Θ(∧kW1,0) is given by −∂∂̄F . Altogether we obtain

vol(B)

k∑
i=1

λi =
1√
2κ
· iκ
n!
· 2π

i
·
(

2πκ

(n+ 1)

)n−1

· c1(E1,0). c1(ωB)n−1[B]

=
1√
2κ
· (2πκ)n

n!(n+ 1)n−1
c1(E1,0). c1(ωB)n−1[B]

On the other hand,

[dvolB ] =
1

n!
[ωhyp]n =

(2πκ)n

n!(n+ 1)n
c1(ωB)n.

This finishes the proof. �

4. Invariants of modular embeddings and commensurability invariants

The trace field of a lattice Γ ⊂ PU(1, n) is defined to be E = Q(tr(Ad(γ)), γ ∈ Γ),
where Ad is the adjoint representation. The trace field is an invariant of the
commensurability class of Γ (e.g. [DM86, Proposition 12.2.1]).

The aim of this section is to show that, among lattices Γ ⊂ PU(1, n) (or rather
SU(1, n) for that matter) that admit a modular embedding, the Lyapunov spectrum
and the relative orbifold Euler characteristics are also commensurability invariants.
In fact, given a modular embedding, we can define several invariants using intersec-
tion theory and we have shown in Theorem 1.1 resp. we will show in Corollary 8.2
later that the two invariants mentioned above, the Lyapunov spectrum and the
relative orbifold Euler characteristics, indeed arise in that way. At the end of this
section we give another proof of the commensurability invariance of the Lyapunov
spectrum without referring to modular embeddings.

Remark. From the point of view of Lyapunov exponents, arithmetic lattices in
PU(1, n) are less interesting, as we will show in the next section.

The construction of non-arithmetic lattices in PU(1, n) is a long-standing chal-
lenge. Besides the cyclic coverings studied below there are several techniques to
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construct (non-arithmetic) lattices in PU(1, n), notably the original construction us-
ing complex reflection groups by Mostow ([Mos80]). By the work of Sauter ([Sau90])
and Deligne-Mostow ([DM93]) all the presently known non-arithmetic lattices in
PU(1, n) turn out to be commensurable to lattices arising from cyclic coverings.
See [Par09] for a recent survey on commensurability results and [DPP11] for other
constructions that by numerical evidence are very likely to give finitely many other
non-arithmetic lattices.

4.1. Modular embeddings. In the following, we suppose that Γ ⊂ SU(1, n) ∩
GLn+1(F ) for some number field F , which we take to be Galois over Q. In particular,
the Zariski closure of Γ, which by Borel density is all of SU(1, n), is defined over F ,
as is the adjoint representation. This entails E ⊆ F .

We say that Γ admits a modular embedding, if for any σ ∈ Gal(F/Q)

a) the Galois conjugate group Γσ fixes a hermitian form of signature (p(σ), q(σ)),
where we assume that p(σ) ≥ q(σ), and

b) there is a holomorphic map ϕσ : Bn → Bp(σ),q(σ) to the symmetric space of
PU(p(σ), q(σ)) that is equivariant with respect to the action of Γ on the domain
and Γσ on the range of ϕσ.

We will show below that a lattice as above admits at most one modular embedding.
Namely, the signature (p(σ), q(σ)) is uniquely determined by (Γ and) σ by Lemma 4.1
below, and the map ϕσ is unique by Theorem 4.3.

In passing, we note that p(σ) = 0 or q(σ) = 0 implies that Bp(σ),q(σ) is a point,
thus ϕσ = const trivially does the job.

Our notion of modular embedding is essentially the same as in [CW93]. Modular
embeddings are also discussed in [McM13, Sec. 10]; however one should be aware
that the target space of the period map used there is not equal to the period domain
for signatures (p, q) with p+ q = n+ 1, |p− q| < n− 1.

Lemma 4.1. Let Γ and σ be as above. Then Γσ preserves a hermitian form for at
most one signature (p(σ), q(σ)) with p(σ) ≥ q(σ).

Proof. Suppose the contrary holds. Then the Zariski closure of Γσ is contained
in the intersection of two special unitary groups SU(p1, q1) and SU(p2, q2) with
pi + qi = n + 1, pi ≤ qi but p1 6= q1. These two groups have both the (real)
dimension (n+ 1)2 − 1 and since they are not equal, their intersection has strictly
smaller dimension. The dimension of the Zariski closure is invariant under Galois
conjugation and the Zariski closure of Γ over R is all of SU(1, n), hence of dimension
(n+ 1)2 − 1. This is a contradiction. �

Now we prove the main result about modular embeddings. First, we show that
we can pass to a finite index subgroup to realize the trace field as field of traces
with respect to the standard embedding.

Lemma 4.2. There exists a finite index subgroup Γ1 ⊂ Γ ⊂ SU(1, n), such that the
trace field E = Q(tr(Ad(γ)), γ ∈ Γ) for the adjoint representation of Γ coincides
with the trace field Q(tr(γ), γ ∈ Γ1) for the standard representation of Γ1.

Proof. By the argument given in [McR11, Appendix 2] it suffices to take Γ1 as the
kernel of the map from Γ to its maximal abelian quotient of exponent n+ 1. �
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Theorem 4.3. Suppose Γ ⊂ SU(1, n) is a lattice with Galois conjugate Γσ ⊂
SU(p(σ), q(σ)) and we are given two maps ϕi : Bn → Bp(σ),q(σ), i = 1, 2 equivariant
with respect to the action of Γ and Γσ on domain and range. Then ϕ1 = ϕ2.

If τ fixes E and ϕ1 is equivariant with respect to Γ and Γσ and ϕ2 is equivariant
with respect to Γ and Γστ , then the signatures of the hermitian forms preserved by
Γσ and Γστ coincide and, moreover, there exists an automorphism M of Bp(σ),q(σ)

such that M ◦ ϕ1 = ϕ2.

Note that this statement is somewhat stronger than usual rigidity results for
VHS (see e.g. [PS03, Corollary 12]) that require a priori that the two period maps
coincide at one point.

Proof. The case p(σ) = 0 or q(σ) = 0 is trivial, since the range of ϕi is just a point
in this case.

Assume first that ϕi is constant. Then Γσ is entirely contained in the stabilizer
of a point in SU(p(σ), q(σ)). Thus, the Zariski-closure of Γσ has strictly smaller
dimension than SU(p(σ), q(σ)). But on the other hand, this dimension is the same
as the dimension of the Zariski-closure of Γ, which is SU(1, n), and we arrive at a
contradiction. Thus, both ϕi are not constant.

We consider the modular embeddings ϕi as maps to the Harish-Chandra real-
ization of Bp(σ),q(σ) as a bounded symmetric domain. Being composed of bounded

holomorphic functions, each ϕi has a boundary map ϕ∗i : ∂Bn → Bp(σ),q(σ) defined
almost everywhere on ∂Bn and given by ϕ∗i (x) = limn→∞ ϕi(ξn) for any sequence
of points ξn → x that stay in an angular sector Dα(x).

Since Γ is a lattice, it is in particular a discrete subgroup of divergence type, and
hence the set points of approximation in ∂Bn (those that can be approximated by
a sequence in Γ · z that stays in a angular sector Dα) is of full Lebesgue measure.
Consequently, we obtain ϕ∗i (x) = limϕ(γn(x0)) for some x0 ∈ Bn and a sequence
of γn ∈ Γ. We may replace x0 by any other point y0 ∈ Bn and still x = lim γn(y0),
since the hyperbolic distances d(γn(y0), γn(x0)) = d(x0, y0) are unchanged.

We claim that the boundary maps agree, i.e. ϕ∗1 = ϕ∗2 on ∂Bn. For this purpose
we first show that almost everywhere ϕ∗i maps ∂Bn to ∂Bp(σ),q(σ) (compare to [Shi04,
Lemma 2.2]). Since ϕi is non-constant, there exist x0, y0 ∈ Bn with ϕi(x0) 6= ϕi(y0).
This implies

0 < d(ϕi(x0), ϕi(y0)) = d(γσn(ϕi(x0)), γσn(ϕi(y0))) = d(ϕi(γn(x0)), ϕi(γn(y0))).

If x = lim γn(x0) ∈ ∂Bn is a point of approximation, taking the limit n → ∞
the inequality gives a contradiction if ϕ∗i (x) lies in the interior of Bp(σ),q(σ). This
argument also shows that for any such approximation x = lim γn(x0) the sequence
γσn(ϕi(x0)) goes to the boundary of Bp(σ),q(σ). The limit point of such a sequence is
known to exist since ϕ∗i is well-defined and, by the same argument as above in Bn,
it only depends on the group elements γσn , not on the starting point. Consequently,

ϕ∗1(x) = limϕ1(γn(x0)) = lim γσn(ϕ1(x0)) = lim γσn(ϕ2(x0)) = ϕ∗2(x),

as we claimed.
Now, the Cauchy integral formula is still valid for these boundary maps ([Rud87,

Theorem 11.32 and Theorem 17.18]), since we may also use radial limits to define
ϕ∗i . These theorems imply that the maps ϕ1 and ϕ2 agree.

For the proof of the second statement we may pass to a subgroup of finite index
and thus we suppose that Γ itself satisfies the conclusion of Lemma 4.2. By this
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assumption and definition τ fixes all traces of elements in Γ and consequently the
two representations Γστ and Γσ are isomorphic (e.g. [Lan02, Corollary XVII.3.8]), in
particular their signatures agree. If M is the matrix that provides the isomorphism,
i.e. MγσM−1 = γστ , then both ϕ2 and M ◦ ϕ1 are equivariant with respect to Γ
and Γστ . By the first part these two maps agree. �

In the situation considered everywhere in the sequel, the existence of a modular
embedding is no obstruction thanks to the following proposition, but in general the
existence of modular embeddings is a hard problem, even for one-dimensional ball
quotients, i.e. for Fuchsian groups.

Proposition 4.4. Γ arises as the monodromy group of a uniformizing sub-local
system W in a polarized Q-VHS V of weight 1 if and only if Γ admits a modular
embedding.

Proof. Suppose that Γ is the monodromy group of a uniformizing sub-local system
of V. By Deligne’s semisimplicity theorem, VC decomposes into a direct sum of
irreducible C-VHS, one of which is W. Since V is defined over Q, all Galois conjugate
local systems Wσ appear in the decomposition of VC. After tensoring with C, these
Wσ are polarized C-VHS of weight 1, thus their monodromy representation fixes an
indefinite hermitian form of some signature (p(σ), q(σ)), and their period map ϕσ is
an equivariant map Bn → Bp(σ),q(σ) as desired.

Conversely, let Γ have a modular embedding. Each group homomorphism Γ→ Γσ

determines a C-local system Wσ. These carry a polarized VHS of weight 1 induced
by the map ϕσ. The direct sum

⊕
σ∈Gal(F/Q) Wσ is a polarized VHS that is defined

over Q. �

4.2. Commensurability invariants. Fix a lattice Γ ⊂ SU(1, n)∩GLn+1(F ) with
modular embedding. This determines a Hodge structure on the corresponding local
system Wσ on the ball quotient B = Bn/Γ. We focus on the case of signature (1, n).
The subbundle of holomorphic forms E1,0 is thus of rank one. All the numbers(
c1(E1,0)a. c1(ωB)b

)
/c1(ωB)n for (a, b) ∈ N2

0 with a + b = n are invariants of the
modular embedding. By homogeneity, they are also unchanged under passage from
Γ to a subgroup of finite index. By the preceding Theorem 4.3 there is no choice
involved in fixing the modular embedding, and these numbers only depend on the
coset of σ in Gal(F/Q)/Gal(F/E). Altogether, this yields the following.

Corollary 4.5. For any (a, b) ∈ N2
0 with a+ b = n and σ ∈ Gal(F/Q)/Gal(F/E)

the ratios
c1(E1,0)a. c1(ωB)b

c1(ωB)n
, E1,0 = E1,0(Wσ)

are commensurability invariants of Γ.

We end this section with a proof of this corollary for the special case a = 1, i.e.
for Lyapunov exponents, not relying on Theorem 4.3, but rather on the definition
of Lyapunov exponents.

Proposition 4.6. In the situation of Theorem 1.1, passing from Γ to a subgroup
Γ′ of finite index and to the pullback VHS does not change the Lyapunov spectrum.

Proof. Let F ⊂ B be a fundamental domain for Γ and F ′ ⊃ F be a fundamental
domain for Γ′. Given a starting point x ∈M = T1Bn, for all times t such that gt(x)
is Γ′-equivalent to a point in F , the quantity 1

t log ‖gt(v)‖ appearing on the right of
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(15) is the same for both situations. Since the geodesic flow is ergodic, this set of
times is cofinal and thus the limit in (15) is the same in both situations. �

Definition 4.7. Let Γ be a lattice admitting a modular embedding, and let W be
the uniformizing VHS on Bn/Γ. The Lyapunov spectrum of Γ is the set of different
Lyapunov exponents in the Lyapunov spectrum of the Q-VHS

P(Γ) =
⊕

σ∈Gal(F/Q)

Wσ.

The definition might a priori depend on the choice of the modular embedding.
We show that this is not the case.

Theorem 4.8. The Lyapunov spectrum of a lattice Γ in PU(1, n) that admits a
modular embedding is well-defined. It is a commensurability invariant among all
lattices in PU(1, n) that admit a modular embedding.

Proof. The Lyapunov spectrum is determined by the choice of the geodesic flow on
the base B, the Haar measure µ on B, the local systems with monodromy group
Γσ and a norm satisfying the growth conditions in Theorem 2.5. Any choice of a
modular embedding defines a Hodge structure and thus a corresponding Hodge norm.
But the Lyapunov spectrum does not depend on this choice by Lemma 2.6. �

Note that for a lattice Γ admitting a modular embedding, the Q-VHS P(Γ) is
equal to its primitive part. If on the other hand, V is a Q-VHS on Bn/Γ containing
a primitive part P, then the uniqueness of the uniformizing sub-VHS and the above
theorem yield that the set of Lyapunov exponents of P (forgetting multiplicities) is
equal to the Lyapunov spectrum of Γ.

5. Arithmeticity

Recall that a lattice Γ ⊂ PU(1, n) is called arithmetic, if Γ is commensurable to
φ(GZ), the image of the integral points in some linear algebraic group GR, admitting
a continuous surjective homomorphism φ : GR → PU(1, n) with compact kernel.

Let P be a Q-irreducible Q-VHS. Note that a uniformizing C-sub-VHS W of
signature (1, n) of PC is defined over R if and only if n = 1. We say that the
Lyapunov spectrum of P is maximally degenerate, if it contains twice the Lyapunov
exponents 1 and −1 for n > 1 (resp. once for n = 1) and all the other Lyapunov
exponents are zero.

Proposition 5.1. If Γ ⊂ PU(1, n) is an arithmetic lattice, then the Lyapunov
spectrum is maximally degenerate.

Proof. Suppose that Γ is arithmetic. Then W (and hence W) is uniformizing, and
all other conjugates of W are unitary ([DM86, 12.2.6]). In particular, Γ admits a
modular embedding with ϕσ being either the identity or constant. For all conjugates
of W the Lyapunov spectrum is determined by Theorem 1.1 i) and iii) and this is
precisely the content of the notion maximally degenerate. �

We remark that the converse of the preceding proposition is an interesting
problem. Suppose that some Q-irreducible VHS P over some ball quotient B = Bn/Γ
is maximally degenerate. If we knew that PC contained a sub-VHS W of signature
(1, n), then maximally degenerate implies that this W reaches the Arakelov bound by
(2). Then W⊕W uses up all the non-zero Lyapunov exponents. In the complement,
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the norm growth along the geodesic flow is subexponential. By the argument in
[Möl11, Proposition 5.4] this complement is in fact a unitary VHS. Consequently,
we can conclude as in [VZ07] or [MVZ12] to show that Γ is arithmetic. The missing
step is thus the question whether there exists at all such a C-sub-VHS of PC.

6. Cyclic covers

The section contains well-known general material that is used as preparation for
the next section. We start with generalities on cyclic coverings and then recall which
cyclic coverings give rise to a structure of a ball quotient on the parameter space.

6.1. The parameter space for cyclic coverings. Let N ≥ 3 and let B0 =M0,N

denote the moduli space (or configuration space) of N ordered points on P1 = P1(C).
Explicitly, if we let

M0 =
{
x = (x1, . . . , xN ) ∈ (P1)N | ∀i, j ∈ {1, . . . , N} : xi 6= xj

}
then PGL2(C) acts diagonally on M0 and

B0 = PGL2(C)\M0.

Let a, b, c ∈ P1 be distinct and consider the space of normalized tuples{
x ∈M0 | x1 = a, xN−1 = b, xN = c

}
.

We may identify B0 with this set. A point in B0 will be denoted by x; we will often
choose a convenient representative by fixing three coordinates.

6.1.1. The type of a cyclic covering. A tuple (d; a1, . . . , aN ) of natural numbers
is called a type of a cyclic covering if

d ≥ 2, 0 < ai < d, gcd(a1, . . . , aN , d) = 1,

N∑
i=1

ai ∈ dZ.

A cyclic covering of type (d; a1, . . . , aN ) branched at x ∈ B0 is the complete,
nonsingular curve X with affine equation

yd =

N∏
i=1

(x− xi)ai .

Its genus is given by the Riemann-Hurwitz formula

g(X) =
N − 2

2
d+ 1− 1

2

N∑
i=1

gcd(ai, d).

By varying x ∈ B0 we obtain a family of cyclic covers of the same type

f : X → B0.(18)

Since this family is locally topologically trivial, the sheaf R1f∗(C) is a local system
on B0.
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6.1.2. Stable and semi-stable points, cusps. We enlarge B0 by adding divisors
in the boundary that parametrize stable points (compare [DM86, Section 4]) and
this enlarged space will have the structure of a ball quotient. Sometimes the ball
quotient is not yet compact and we add some boundary points, called cusps, that
parametrize classes of semi-stable points in M .

For a fixed µ = (µi)1≤i≤N ∈ (Q∩ (0, 1))N such that
∑
i µi = 2, we call x ∈ (P1)N

a µ-stable (resp. µ-semi-stable) point, if for all z ∈ P1∑
i:xi=z

µi < 1 (resp.
∑
i:xi=z

µi ≤ 1).

Define M = Mµ ⊃M0 to be the set of µ-stable points and let

B = Bµ = PGL2(C)\M.

Then B is a complex manifold containing B0 as an open subspace. We use throughout
the convention adopted here to refer to the tuple of weights defining (semi-)stable
points by upper indices (like Bµ or Bk later), while lower indices refer to parameters
of the local system (or period maps) on these spaces.

Next let M = M
µ ⊃ Mµ be the set of µ-semi-stable points. If x ∈ (P1)N is

strictly semi-stable, then there is a unique partition of {1, . . . , N} = S1∪̇S2, such
that

∑
k∈Sj µk = 1 for k = 1, 2, xi 6= xj for i ∈ S1, j ∈ S2, and i 7→ xi is constant

on S1 or on S2. To define B, we first take the quotient of M by PGL2(C) and
then identify the classes of strictly semi-stable points having the same partition.
The elements of B \B are called cusps. B with its quotient topology is a compact
Hausdorff space and an algebraic variety [DM86, 4.3, 4.4.2, 4.5].

Let {i, j} ⊂ {1, . . . , N} be a two-element subset such that µi + µj < 1. Define
the elliptic divisor Lij = Lµij as the image of{

x = (x1, . . . , xN ) ∈M | xi = xj
}

under the projection modulo PGL2(C). The interior L◦ij of Lij is defined as the
subset of Lij where precisely two coordinates are equal.

6.2. Cyclic coverings uniformized by the ball. For a cyclic covering of type
(d; a1, . . . , aN ), define µi = ai/d. The following condition on the µi was the first
criterion that provided a general construction of ball quotients.

N∑
i=1

µi = 2, and for all i 6= j with µi + µj < 1, (1− µi − µj)−1 ∈ Z(INT)

Theorem 6.1 ([DM86]). If µ satisfies (INT) then B is a ball quotient.

One can relax the condition (INT) in order to be more flexible and to obtain more
ball quotients. We say that the tuple of µ satisfies (ΣINT), if there is S ⊂ {1, . . . , N}
such that the following conditions hold.

(ΣINT)

N∑
i=1

µi = 2, and µi = µj for all i, j ∈ S and moreover

for i 6= j with µi + µj < 1 : (1− µi − µj)−1 ∈
{

1
2Z i, j ∈ S
Z otherwise
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Let Σ = Sym(S) act on B by permuting coordinates.

Theorem 6.2 ([Mos86]). If µ satisfies (ΣINT) then B/Σ is a ball quotient.

6.3. The non-arithmetic examples. In the following table we reproduce (and
number) the non-arithmetic examples of two-dimensional ball quotients of [DM86]
and [Mos86], according to the corrected table in [Mos88]. Note that example no. 5
in loc. cit. has a misprint concerning the ai.

d a1 a2 a3 a4 a5 Lpar
ij g comm. to

1 12 3 3 3 7 8 INT B9 −− 12 4
2 12 3 3 5 6 7 INT B9 L35 12
3 12 4 4 4 5 7 INT B10 L45 12
4 12 4 4 5 5 6 INT B10 −− 11 1
5 15 4 6 6 6 8 INT B10 −− 18 13
6 18 2 7 7 7 13 ΣINT B7/Σ3 −− 25 7
7 18 7 7 7 7 8 ΣINT B10/Σ4 −− 25 6
8 20 5 5 5 11 14 INT B9 −− 22 9
9 20 6 6 9 9 10 ΣINT B10/Σ2 −− 23 8
10 20 6 6 6 9 13 ΣINT B9/Σ3 −− 27
11 24 4 4 4 17 19 ΣINT B9/Σ3 −− 30 12
12 24 7 9 9 9 14 INT B10 −− 31 11
13 30 5 5 5 22 23 ΣINT B9/Σ3 −− 37 5
14 42 7 7 7 29 34 ΣINT B9/Σ3 −− 53 15
15 42 13 15 15 15 26 ΣINT B10/Σ3 −− 58 14

The trace fields of these lattices are Q[cos(2π/d)]. They are distinct if and only if
the d are distinct with the exception that d = 15 and d = 30 produce the same trace
field (and indeed commensurable lattices). The commensurability results of Sauter
and Deligne-Mostow (see [Par09, Section 3]) among these lattices are indicated in
the last column.

In dimension three, there is a unique commensurability class of a non-arithmetic
ball quotient known, given by the cyclic covering of type (12; 7, 5, 3, 3, 3, 3).

6.4. Realizations of the compactification and their intersection rings. For
technical reasons we will need the boundary of the ball quotients to be a normal
crossing divisor. By [DM86, Lemma 4.5.1], B is smooth if for all cusps, the associated
partition {S1, S2} satisfies |S1| = 2 or |S2| = 2. Fortunately, this applies to all
cases that we need to consider. We will thus blow up the cusps and in the blowup
Bnc → B the preimage of the cusp is now a divisor, called boundary divisor. In
the two-dimensional case, each of these divisors can be identified with the image
modulo PGL2(C) of the set of all semi-stable points in M with xi = xj for some
i, j. We will write Lpar

ij to distinguish these divisor from elliptic divisors which are
also some Lij , but the monodromy is elliptic, as opposed to parabolic in the case of
boundary divisors.

6.4.1. Dimension two, case (INT). We start with two-dimensional ball quo-
tients satisfying (INT). In all the cases that we will be interested in Bnc will contain
all the 10 divisors Lij (some of them possibly being Lpar

ij ) or 9 out of the 10.
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We call the first case B10. In this case |Lij ∩ Lkl| = 1 if {i, j} ∩ {k, l} = ∅ and
Lij ∩ Lkl = ∅ other wise. The variety B10 is isomorphic to P2 blown up at 4 points
in general position [Yos87, §10.5]. Therefore, CH1(B10) is generated by

h, e1, . . . , e4

where h is the pullback of the hyperplane class in CH1(P2), and e1, . . . , e4 are
the classes of the four exceptional divisors. The ten lines Lij are given by the
strict transforms of the six lines in P2 connecting the four points, and by the four
exceptional divisors. The classes of the lines can be expressed in the generators (up
to renumbering) as

[Lij ] = h− ek − em where {i, j, k,m} = {1, . . . , 4}
[Li5] = ei.

The intersection matrix with respect to the ordering h, e1, e2, e3, e4 is

diag(1,−1,−1,−1,−1),

and the canonical class is KB10 = −3h+ e1 + e2 + e3 + e4.
We call the second case B9 and we may choose indices so that B10 → B9 contracts

L45. Said differently, B9 can be obtained by blowing up P2 at three points in general
position. Now, CH1(B9) = 〈h, e1, e2, e3〉 and

[L12] = h− e3, [L13] = h− e2, [L23] = h− e1

[Li4] = h− ek − em where {i, k,m} = {1, 2, 3}
[Li5] = ei. for i = 1, 2, 3

The intersection pairing has matrix diag(1,−1,−1,−1) and the canonical class is
KB9

= −3h+ e1 + e2 + e3.

6.4.2. Dimension two, case (ΣINT). We will also need to work with the quo-
tient of B by a symmetric group Σ. Let S ⊆ {1, . . . , 5}, and let Σ = Sym(S) act
on B by permuting the coordinates. The Chow ring CH∗(B/Σ)Q is isomorphic to
(CH∗(B)Q)Σ, and the ring structure is given by

(D1.D2) = 1/|Σ| · η∗(η∗D1.η
∗D2)

where η : B → B/Σ denotes the quotient map. Note that the pullback of a divisor is
the sum of the irreducible components of the preimage, each weighted with the order
of its stabilizer. Moreover, by [Ful84, 17.4.10], the ring structure is independent of
the presentation of B/Σ as a quotient by a finite group.

We only present the cases of B and Σ that are actually needed in the subsequent
computations. The case of a permutation group of 4 elements appearing in line 7 of
the above table will not be treated, since it is covered by the case in line 6 and the
commensurability Theorem 4.8.
The case B9/Σ3. Let S = {1, 2, 3}, and consider the action of Σ3 = Sym(S) on
B = B9. The map η is ramified of order 2 along the divisors L12, L23 and L13.
The group CH1(B9/Σ3)Q is generated by the images [L14], [L15], and [L12] of the
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divisors and

η∗[L14] = [L14] + [L24] + [L34],

η∗[L15] = [L15] + [L25] + [L35],

η∗[L12] = 2([L12] + [L23] + [L13]).

Note that [L12] = 2([L14] + [L15]). The intersection matrix with respect to this
system of generators is −1/2 1 1

1 −1/2 1
1 1 4

 .

By Riemann-Hurwitz,

η∗KB9/Σ3
= KB9

− ([L12] + [L23] + [L13]).

By intersecting with all generators in CH1(B9/Σ3)Q, we obtain

KB9/Σ3
= −[L12].

The case B7/Σ3. Again, let S = {1, 2, 3}, and let B7 be the space obtained from
B10 by collapsing all Li5, i = 1, . . . , 3. This is the projective plane blown up at one
point. Let again h denote the hyperplane class and let e denote the class of the
exceptional divisor. Then the classes of the boundary divisors are given by

[Li4] = h, i = 1, 2, 3

[L12] = [L23] = [L13] = h− e
[L45] = e

The Chow group CH1(B7/Σ3)Q is generated by [L12], [L14] and [L45], and

η∗[L12] = 2([L12]+[L23]+[L13]), η∗[L14] = [L14]+[L24]+[L34], η∗[L45] = [L45].

The respective matrix of the intersection product is0 3 1
3 3/2 0
1 0 −1/6

 ,

and the canonical class is given by

KB7/Σ3
= − 2

3 ([L12] + [L14]).

6.4.3. Dimension three. In order to compute the intersection ring of the mod-
uli space B14 (we keep indexing by the number of boundary divisors of sta-
ble configurations) of the three-dimensional ball quotient we use the formalism
of weighted stable curves of Hassett ([Has03]). In his language, we are inter-
ested in M0;( 7

12 ,
5
12 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ). The space M0;(1, 14 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ) is isomorphic to P3 and

M0;(1, 24 ,
1
4 ,

1
4 ,

1
4 ,

1
4 ) is the blowup of P3 corresponding to curves where the points with

labels I3 = {2, 4, 5, 6}, I4 = {2, 3, 5, 6}, I5 = {2, 3, 4, 6} resp. I6 = {2, 3, 4, 5} come
together. Reducing the weights from (1, 2

4 ,
1
4 ,

1
4 ,

1
4 ,

1
4 ) to (1, 5

12 ,
1
4 ,

1
4 ,

1
4 ,

1
4 ) and further

to ( 7
12 ,

5
12 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ) is an isomorphism, as can be checked using the criterion in

[Has03, Section 4.2]. Consequently, we are interested in a projective space P3, blown
up at four points Pi corresponding to the set of indices Ii, i = 3, 4, 5, 6.
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We deduce from [Ful84, Proposition 6.7 (e)] that Pic(B14) is freely generated
by the pullback h of the hyperplane class of P3 and the classes of the exceptional
divisors e3, e4, e5, e6. Moreover, CH1(B14) is generated by the pullback of a line `
from P3 and lines `i on the exceptional divisors. The ring structure of the chow ring
is given by h · h = `, ei · ei = (−1) · `1 and h · ` = 1, ei · li = 1 as well as zero for all
intersections not listed above.

If we normalize x1 =∞ and let zi = x2 − xi, then (z3 : z4 : z5 : z6) is indeed a
coordinate system, in which P3 = (1 : 0 : 0 : 0) etc. and the semi-stable point is
P12 = (1 : 1 : 1 : 1). In these coordinates, one checks that

L1j = ej , L2j = h− e3 − e4 − e5 − e6 + ej , j = 3, 4, 5, 6.

Ljk = h− e3 − e4 − e5 − e6 + ej + ej 3 ≤ j < k ≤ 6

Finally, the formula for the behaviour of the canonical class yields

KB14
= −4h+ 2e3 + 2e4 + 2e5 + 2e6.

6.5. Decomposition of the VHS for cyclic coverings. A general reference for
the following discussion is [Bou05] and [Bou01]. Let G = Gal(X/P1) ∼= Z/(d) be
the Galois group of a cyclic cover of type (d; a1, . . . , aN ). Fix a primitive d-th root
of unity ζ, the generator g of G given by

g : x 7→ x, y 7→ ζy

and let χ : G → C× be the character of G defined by χ(g) = ζ−1. As G acts on
H1

dR(X), we can decompose this space into eigenspaces

H1
dR(X) =

d⊕
k=1

H1
dR(X)χk .

Since the action of G respects the Hodge decomposition H1
dR(X) = H1,0 ⊕H0,1, we

also have a decomposition of H1,0 and H0,1.
The eigenspace decomposition carries over to the relative situation of (18). We

have

R1f∗C =

d⊕
k=1

Lk.

Let

L1,0
k ⊆ Lk ⊗OB0

be the subbundle of holomorphic forms, and let

L0,1
k = (Lk ⊗OB0)/L1,0

k .

The Chevalley-Weil formula gives information about the dimensions of the eigen-
spaces. Define for each k = 1, . . . , d

µi(k) =

〈
k · ai
d

〉
, µ(k) = (µi(k))i

ai(k) = µi(k) · d

σ(k) =

N∑
i=1

µi(k)

Here 〈x〉 = x−[x] denotes the fractional part of x ∈ R. Further, let s(k) ∈ {0, . . . , N}
be the number of ai that are not equal to 0 modulo d/ gcd(k, d).
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Lemma 6.3. With the notations above,

a) The rank of L1,0
k is σ(k)− 1, and the rank of L0,1

k is s(k)− 1− σ(k).
b) Lk is a C-local system of dimension s(k)− 2, polarized by a hermitian form of

signature (σ(k)− 1, s(k)− 1− σ(k)).

c) When k is prime to d, an explicit basis of L1,0
k is given by

ωlk = y−kxlfk dx

with fk =
∏
j(x− xj)

[
kaj
d ] where l = 0, . . . , σ(k)− 2.

Proof. a) is shown in [Bou01, Lemma 4.5], and b) follows from a) and the fact that
Lk is a polarized C-VHS. Part c) is proved in [Bou05, Lemma 1.1.2]. In both source,
our index k is replaced by d− k. �

The Galois conjugates of the local system L1 are parametrized by k ∈ {1, . . . , d−1}
such that gcd(k, d) = 1. We will speak of (µi(k))i as a Galois conjugate tuple.
Furthermore, the local system L1 corresponds to a non-arithmetic lattice in PU(1, n)
if and only if (µi)i satisfies (ΣINT) and at least one Galois conjugate Lk has signature
different from (0, n) and (n, 0).

6.6. The period map. For each k = 1, . . . , d−1, where L1,0
k is not trivial, we obtain

a period map B̂0 → Per(Lk) from the universal covering B̂0 of B0 to the period
domain of the VHS Per(Lk). It is equivariant with respect to the action of π1(B0) on

B̂0 and on Per(Lk) via the monodromy representation ρk : π1(B0, x
′)→ Aut((Lk)x′).

Let Kk = ker(ρk), and let B̃k0 = B̂0/Kk. Denote pk : B̃k0 → Per(Lk) the resulting
period map.

The map pk can be though of as a multi-valued map on B0. For x ∈ B0 choose a
path connecting x to x′. Via this path, the fibers of R1f∗C above x and x′ can be
canonically identified. Moreover,

(R1f∗C)x′ ∼= H1(Xx′ ,C) ∼= H1
sing(Xx′ ,C)

Hence, the inclusion

H1,0(Xx)→ H1
sing(Xx′ ,C)

is given by integration ω 7→ (γ 7→
∫
γ
ω). Since this inclusion is equivariant with

respect to the G-action, it induces an inclusion

(L1,0
k )x ∼= H1,0(Xx)χk → H1

sing(Xx′ ,C)χk ∼= (Lk)x′

and pk maps x to the point in Per(Lk) defined by the image of this morphism. Since
pk(x) depends on the chosen path, pk is multi-valued on B0.

Assume for the rest of Section 6.6 that
∑
i µi(k) = 2 and µi(k) 6∈ Z for all i. Then

L1,0
k is a line bundle with a global non-zero section ωk(x) = ω0

k(x) ∈ H0(B0,L1,0
k )

and Per(Lk) is a ball in a projective space of dimension n = N − 3.

Lemma 6.4 ([DM86, Lemma 3.9]). Let N ≥ 4. The (multi-valued) period map

pk : B0 → P(H1(Xx′ ,C)χk), x 7→
(
γ 7→

∫
γ

ωk(x)

)
has injective differential for every x ∈ B0. It is given by the map

(T B0)x → Hom(H1,0(Xx)χk , H1(Xx,C)χk/H
1,0(Xx)χk)
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mapping ∂
∂v to

(γ 7→ ∂

∂v

∫
γ

ωk =

∫
γ

∂

∂v
ωk)

This implies that pk is a local isomorphism on B̃k0 , since the dimensions of the
range and image agree. Recall also from Sec. 2.2.1 that the derivative of the period
map is equal to the map τ̃ , derived from the dual τ∨ of the Higgs field.

6.6.1. Extending the period map. As in [DM86], we consider the Fox comple-

tions B̃k of B̃k0 over Bk = Bµ(k) and B̃ksst over B
k

= B
µ(k)

. The period map pk has

continuous extensions, denoted pkk, to B̃k and to B̃ksst ([DM86, Sect. 8]), both of
which are equivariant for the monodromy action of π1(B0). The following diagram
gives an overview of the spaces involved

(19) B̂0

/Kk

��
Per(Lk) B̃k0

pkoo

��

⊂ B̃k

pkk

jj

u

��

⊆ B̃ksst

��
B0 ⊂ Bk ⊆ B

k Bk,ncoo

If there is additional symmetry in the tuple (µi(k))i, then the above discussion carries
over to a quotient (see [Mos86]). Let S ⊂ {1, . . . , N}, and assume µi(k) = µj(k)
for all i, j ∈ S. The group Σ = Sym(S) acts on B0, and there is an open, dense
submanifold F where the action is free. The VHS on B0 descends to a VHS Lk,Σ
on the quotient F/Σ, and we obtain a period map F̂/Σ → Per(Lk,Σ) from the
universal covering of F/Σ to the period domain of Lk,Σ, which is equivariant for
the monodromy action ρk,Σ of π1(F/Σ). Set

Kk,Σ = ker(ρk,Σ) and F̃ kΣ = F̂/Σ/Kk,Σ,

and let

pkk,Σ : B̃kΣ → Per(Lk,Σ)

denote the induced map from the Fox completion of F̃ kΣ over Bk/Σ to the period
domain of Lk,Σ.

Remark. Assume that µ = µ(1) satisfies (INT), then p1
1 is an isomorphism from B̃1

onto a complex ball, and turns B1 into a ball quotient. If µ satisfies (ΣINT), the
same is true for the induced map p1

1,Σ and B1/Σ.

We shall also need the extension of the period map of Lk to the Fox completion

B̃1. The generic case is the following: µ(1) satisfies (ΣINT) and k parametrizes a
Galois conjugate Lk,Σ of L1,Σ. Since the kernels K1,Σ = Kk,Σ, we obtain a period
map

p1
k,Σ : F̃ 1

Σ → Per(Lk,Σ)

which we wish to extend to B̃1
Σ. Via p1

1,Σ, the set F̃ 1
Σ is the complement in Bn of

normal crossing divisors, the preimages of the stable Lij ’s. By Lemma 6.6 below,
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the monodromy about each of these divisors is of finite order, whence by [Gri70,
Theorem 9.5] the map p1

k,Σ extends holomorphically to

p1
k,Σ : B̃1

Σ → Per(Lk,Σ)

with image in the interior of the period domain. The following diagram captures
this situation.

(20) F̂/Σ

/K1,Σ

��
Per(Lk,Σ) F̃ 1

Σ

p1
k,Σoo

��

⊂ B̃1
Σ

p1
k,Σ

dd

��4
44

44
44

44
44

44
44

∼=

p1
1,Σ

// Bn

F ⊆

""FF
FF

FF
FF

F B1

##GGGGGGGG

F/Σ ⊆ B1/Σ

There is a third case, when we need an extension of pk. As above let k parameterize
a Galois conjugate of L1, and let L1 have signature (1, n), but do not assume that µ(1)

satisfies (INT) (e.g. it only satisfies (ΣINT)). Let B̃1
1 denote the Fox completion of

B̃1
0 over the union of B0 with the codimension 1-strata of the µ(1)-stable points. Then

the map p1
k : B̃1

0 → Per(Lk) is again well-defined and extends to p1
k : B̃1

1 → Per(Lk).

The point here is that B̃1
1 is a complex manifold by the discussion in [DM86, Sect.

10], the monodromy about the stable divisors being of finite order. We can thus
apply the same reasoning as in the second case.

6.6.2. Relations between period maps. The period map, and in particular its
domain of definition depends on k. If pk and p` belong to Galois conjugate local
systems, their domains of definition coincide, but in general they need not be related
in any way, as the following example shows.

Example 6.5. Consider the family of cyclic coverings f : X → B0 of type
(12; 3, 3, 3, 7, 8). This family of curves is fiberwise a degree 2-covering of a family
of cyclic coverings f ′ : X ′ → B0 of type (6; 3, 3, 3, 1, 2) by taking the quotient by
〈g2〉 ⊂ G, and the resulting map X → X ′ induces an inclusion of VHS with image⊕

k≡ 0 mod 2

Lk ⊂ R1f∗C.

We neither have K2 ⊆ K1, nor K1 ⊆ K2. To see this, consider the monodromy
transformation, i.e. the image of a small loop γij about one of the divisors Lij
under the monodromy representation ρk. In case

∑
i µi(k) = 2 and µi(k) 6∈ Z,

its order is the denominator of the reduced fraction |1− µi(k)− µj(k)|−1 or ∞ if
µi(k) + µj(k) = 1. Thus, L12 is a parabolic divisor for L2, which is elliptic for L1,
whereas e.g. for L15, the monodromy transformation has order 12 for k = 1 and
order 3 for k = 2.

In particular, the pullback of the local system L2 to the universal cover B̃1 ∼= Bn
of B1 cannot be extended as local system over the preimage of L12 in Bn, thus for
a generic geodesic, parallel transport is not defined for all times.
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For each of the non-arithmetic ball quotients listed in the table in Section 6.3
there exists a sub-VHS for which an analogous statement holds.

For later use, we record a relation between (µi(1))i and (µi(k))i for k prime to d.
Its proof is a straightforward computation.

Lemma 6.6. Let d > 1, k ∈ {0, . . . , d− 1} be prime to d, and let i, j ∈ {1, . . . , N}.
Then

a) µi(k) + µj(k) = 1 iff µi(1) + µj(1) = 1
b) If κij = (1− µi(1)− µj(1))−1 is in Z or if ai = aj, κij ∈ 1

2Z and k is odd, then

κij · (1− µi(k)− µj(k)) ∈ Z.

6.6.3. Explicit description of the period map. We describe a trivialization
of Lk at x ∈ B0. Instead of working with (Lk)x = H1(Xx,C)χk , we use the
isomorphism

(21) H1(Xx,C)χk ∼= H1(P1 \ {x}, L)

where {x} is the set of points defined by x and L is the rank one local system on
P1 \ {x} having local monodromy exp(2πiµi(k)) about xi (see [DM86, Sect. 2] for
a discuss of the cohomology of L). Explicitly, H∗(P1 \ {x}, L) can be computed
using the de Rham complex of C∞-forms on P1 \ {x}. One can also consider
the subcomplex of compactly supported forms, whose cohomology we denote by
H∗c (P1 \ {x}, L).

If none of the µi(k) is an integer, then H∗c (P1 \ {x}, L) ∼= H∗(P1 \ {x}, L) (see
[DM86, 2.3]). The Poincaré duality pairing

Hi(P1 \ {x}, L)⊗H2−i
c (P1 \ {x}, L∨)→ C, α⊗β 7→

∫
P1\{x}

α ∧ β

allows us to identify the dual of H1(P1 \ {x}, L) with the first cohomology of the
complex of currents on P1 \ {x} with values in L∨. We describe a particular basis
of H1(P1 \ {x}, L∨) (compare [DM86, 2.5]). Assume {1, . . . , N} = S1 ∪ S2 is a
partition such that

∑
i∈S1

µi(k) 6∈ Z. Embed the union of two trees T1 ∪ T2 into P1

such that the vertices of Ti are
{
xs | s ∈ Si

}
, and let γj be the oriented edges of

T1 ∪ T2. Then a basis of H1(P1 \ {x}, L∨) is given by the currents of integration
along the paths γj , j = 1, . . . , N − 2, each tensored with a global section ej of L∨

restricted to (the interior of) γj .

If L1,0
k is a line bundle, the basis element of Lemma 6.3 is identified by the

isomorphism (21) with the multi-valued form ωk =
∏
j(x− xj)−µj(k) dx tensored

with an appropriate multi-valued section e of L, so as to produce an honest single-
valued section of H0(P1 \ {x},Ω1(L)) ⊂ H1(P1 \ {x}, L). The period map is then
the map

pk = (F k1 : · · · : F kN−2) with F kj =

∫
γj ⊗ ej

ωk ⊗ e.

7. Lyapunov exponents of ball quotients constructed via cyclic
coverings

In this section we calculate explicitly the Lyapunov exponents for all non-
arithmetic ball quotients arising from cyclic covers. In the table below we also add
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the set of relative orbifold Euler numbers for an easy comparison. Their defintion is
given in the next section.

Theorem 7.1. The non-negative distinct Lyapunov exponents of the primitive part
of the two-dimensional non-arithmetic ball quotients arising from cyclic coverings
are given in the following table. Here, U denotes the maximal unitary subsystem of
P.

d g dimR P dimR U Prim. Lyapunov spectrum Relative eorb

1 12 12 12 0 {1, 5/13, 0} {1, 1/13}
2 12 12 12 0 {1, 5/17, 0} {1, 1/17}
3 12 12 12 0 {1, 7/22, 0} {1, 1/22}
4 12 11 12 0 {1, 5/13, 0} {1, 1/13}
5 15 18 24 6 {1, 16/37, 7/37, 0} {1, 4/37, 1/37}
6 18 25 18 6 {1, 5/16, 0} {1, 1/16}
7 18 25 18 6 {1, 5/16, 0} {1, 1/16}
8 20 22 24 6 {1, 4/11, 3/11, 0} {1, 4/33, 1/33}
9 20 23 24 6 {1, 4/11, 3/11, 0} {1, 4/33, 1/33}
10 20 27 24 12 {1, 11/46, 0} {1, 1/46}
11 24 30 24 12 {1, 7/22, 0} {1, 1/22}
12 24 31 24 12 {1, 7/22, 0} {1, 1/22}
13 30 37 24 6 {1, 16/37, 7/37, 0} {1, 4/37, 1/37}
14 42 52 36 18 {1, 16/61, 13/61, 0} {1, 4/61, 1/61}
15 42 58 36 18 {1, 16/61, 13/61, 0} {1, 4/61, 1/61}

For the three-dimensional ball quotient, the positive primitive Lyapunov spectrum
is given by

1, 1, 25
93 ,

25
93 , 0, 0, 0, 0.

Corollary 7.2. The non-arithmetic lattices in PU(1, n) arising via cyclic coverings
fall into precisely nine commensurability classes.

Proof. Using the trace field, we only need to decide whether no. 2 or 3 belong to
the class of {1, 4} or are commensurable and whether no. 10 belongs to the class of
{8, 9}. But by Corollary 4.5 the primitive Lyapunov spectrum is a commensurability
invariant among lattices admitting a modular embedding. �

The proof of the theorem relies on computing the right-hand side of (2). We
first show how to relate this quantity to contributions coming from the boundary
divisors, and then compute these contributions for each case.

7.1. Intersection products of Chern classes. Let Bu = Bn/Γ′ be a ball quo-
tient, where Γ′ ⊂ PU(1, n) acts cofinitely and freely on Bn. We assume that there
is a smooth projective variety Y such that Bu embeds into Y with Y \Bu = ∆, a
divisor with normal crossings. Suppose further that we are given a polarized C-VHS
Lu on Bu of weight 1 and signature (1, n), whose local monodromies are unipotent.
Recall from Section 2.2.1 that Higgs field τ of Lu comes with two derived maps τ̃
and τ∨.

Lemma 7.3. Assume that τ̃ (or equivalently, τ∨) is injective. Then

(n+ 1) c1(E1,0). c1(ωY )n−1

c1(ωY )n
= 1− c1(coker τ∨). c1(ωY )n−1

c1(ωY )n
,(22)
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where ωY =
∧n

ΩY (log ∆).

Proof. From the assumption, we obtain a short exact sequence

0→ E1,0⊗TY (− log ∆)→ E0,1 → coker τ∨ → 0.

By [EV02, Theorem 1.1], we have

c1(E1,0 ⊕ E0,1) = 0,

and from the above exact sequence we obtain

c1(E0,1) = c1(TY (− log ∆)) + n · c1(E1,0) + c1(coker τ∨).

Combining these two equations yields

(n+ 1) c1(E1,0). c1(ωY )n−1 = −(c1(TY (− log ∆)) + c1(coker τ∨)). c1(ωY )n−1.

�

Remark 7.4. For the computation of c1(coker τ∨), it will be convenient to consider
the following short exact sequence associated with τ̃

0→ TY (− log ∆)→ Hom(E1,0, E0,1)→ coker τ̃ → 0.(23)

Then c1(coker τ̃) = c1(coker τ∨), using additivity of c1 on short exact sequences.

7.2. Computation of c1(coker τ∨) for the case (INT). Let N ≥ 4, and let
f : X → B0 be a cyclic covering of type (d, a1, . . . , aN ), such that the collection
µi = ai/d satisfies (INT). Let B ∼= Bn/Γ be the ball quotient parametrizing µ-stable
points. Let 1 ≤ k ≤ d − 1 be coprime to d, and such that the direct summand
L = Lk in the VHS of f is polarized by a hermitian form of signature (1, n).

We consider a finite index normal subgroup Γ′ of Γ such that the local mon-
odromies about the boundary divisors are unipotent under ρk, and such that
moreover Γ′ acts freely on Bn. We denote π : Bu → B and u : Bn → Bn/Γ′ the two
projections, and let Lu be the pullback of L to π−1(B0) ⊂ Bu. By the discussion
in Section 6.6.1, we can extend Lu to a VHS on Bu, and we denote it by the same
letter.

The results of the preceding sections apply to Lu. Let τ∨ = τ∨k be the dual of
the Higgs field, and let pk = p1

k be the period map for L, which we can also think of
as a multi-valued map on Bu. We have

Lemma 7.5.

c1(coker τ∨) =
∑
{i,j}:

µi+µj<1

nkij ·
∑

L⊂π−1Lij
irred.

[L] +
∑

∆′⊂∆
irred.

n∆′∆
′

Moreover, nkij is the vanishing order of det(J(pk)) at a point of π∗L◦ij.

Proof. Define the line bundles

L1 =

n∧
TB(− log ∆) and L2 =

n∧
Hom(E1,0, E0,1).

Then

c1(coker τ∨) = c1(L2)− c1(L1).

Let φ : L1 → L2 be the map induced by τ̃k. It is locally at p ∈ Y given by
multiplication with ap ∈ OY,p. We tensor both line bundles with L−1

2 . Then the
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image of L1⊗L−1
2 under φ⊗ id is the ideal sheaf I ⊆ OY locally generated by ap.

Moreover,

c1(I) = − c1(coker τ̃),

and c1(I) = −D for some divisor D on Y .
It follows from Lemma 6.4, that ap = 1 if p ∈ π−1(B0). Hence,

supp(−D) ⊆
⋃

(i,j):µi+µj<1

π−1Lij ∪∆.

Let p ∈ π−1L◦ij , and let L be the irreducible component of π∗Lij containing
p. Then ordL(−D) = ordL(ap). Since φ = ∧nτ̃ and since in the interior, τ̃ is the
derivative of the period map pk, it follows that ordL(ap) is independent of the
irreducible component of π−1Lij , since pk is equivariant under the full group Γ, and
given by the vanishing order of det(J(pk)) along a component of the preimage of
Lij . �

7.2.1. Near elliptic divisors. Next we study τ̃k at one of the elliptic divisors
Lij . By Lemma 6.6, µi(k) + µj(k) 6= 1, and

`kij = κij · |1− µi(k)− µj(k)| ∈ N.

Lemma 7.6. We have

nkij =

{
`kij − 1 if µi(k) + µj(k) < 1

n · `kij − 1 if µi(k) + µj(k) > 1

To prove this lemma, we will need an explicit description of the period map
locally about Lij . We recall the discussion in [DM86]. Consider a neighborhood of
a point

x′ = (x′1, . . . , x
′
N ) ∈ PGL2(C)\(P1)N ,

where precisely two entries coincide. Up to renumbering, we can assume them to be
the first two. Lift the point to CN by normalizing x′1 = x′2 = 0, x′N−1 = a, x′N = b
with a, b ∈ C some suitable points. Let ε be so small that the disks of radius ε
about the x′i do not intersect, and let U be the set of

x = (x1 = 0, x2, . . . , xN−2, xN−1 = a, xN = b)

such that |xi − x′i| < ε. Then U describes a neighborhood of x′ ∈ B.
About x ∈ U , we can choose a basis of H1(P1 \ {x}, L) as follows (compare

Section 6.6.3). Let γ1 be the straight line segment connecting x1 = 0 and x2.
Embed a tree T into C \ Bε(0) such that its vertices are xi, i = 3, . . . , N , and
let γj (j = 2, . . . , N − 2) be the edges of T (with a chosen orientation). For each
j = 1, . . . , N − 2, choose a section ej of L∨ on interior of γj .

With this choice of basis, we obtain in particular for the first of the components
F kj of pk

F k1 (x) =

∫ x2

0

x−µ1(k)(x− x2)−µ2(k)
∏
i 6=1,2

(x− xi)−µi(k) dx

= x
1−µ1(k)−µ2(k)
2

∫ 1

0

x−µ1(k)(x− 1)−µ2(k)
∏
i 6=1,2

(x2x− xi)−µi(k) dx
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The factor

Ik(x) =

∫ 1

0

x−µ1(k)(x− 1)−µ2(k)
∏
i6=1,2

(x2x− xi)−µi(k) dx,

and Ik is well-defined at {x2 = 0}. Moreover (compare [DM86, 9.5]), Ik is holo-
morphic and Ik 6= 0 at {x2 = 0}, so we may suppose that Ik does not vanish on
U .
The case µi(k) + µj(k) < 1. The above discussion, together with Lemma 6.4, yields
the following lemma, see [DM86, 9.5].

Lemma 7.7. a) If µi(k) + µj(k) < 1, then in a neighborhood U of the divisor Lij,
the period map is a multi-valued map to Pn, locally given as

(z1, . . . , zn) 7→ (z
1−µi(k)−µj(k)
1 , z2, . . . , zn),

where z1 = 0 is a local equation for Lij.
b) Assume that (µi(1))i satisfies (INT). The ramification order of π : Bu → B at

Lij is

κij = (1− µi − µj)−1.

Proof of Lemma 7.6, first case. The period map pk thought of as a multi-valued
map on Bu is locally about Lij given as the composition(

(z1, . . . , zn) 7→ (z
1−µi(k)−µj(k)
1 , z2, . . . , zn)

)
◦
(
(z1, . . . , zn) 7→ (z

κij
1 , z2, . . . , zn)

)
.

Hence, det(J(pk)) = `kijz
`kij−1

1 . �

The case µi(k) + µj(k) > 1. Then the multivalued function

F k1 = x
1−µ1(k)−µ2(k)
2 Ik

has a pole at x2 = 0 of order |1− µ1(k)− µ2(k)| ∈ Q and the projective tuple

(x
µ1(k)+µ2(k)−1
2 F k1 : · · · : xµ1(k)+µ2(k)−1

2 F kN−2)

is well-defined on U . We set m = µ1(k) + µ2(k) − 1 and dehomogenize pk with
respect to the first coordinate

pk(x) = (F k2 /F
k
1 , . . . , F

k
N−2/F

k
1 )

= (xm2 F
k
2 /Ik, . . . , x

m
2 F

k
N−2/Ik).

For the computations below the following lemma is useful. Its proof is a straight-
forward computation.

Lemma 7.8. Let U ⊂ Cn,

f : U → Pn, w = (w1, . . . , wn) 7→ (f0(w) : f1(w) : · · · : fn(w))

be a holomorphic map, and let w ∈ U be such that f0(w) 6= 0. Then in an open
neighborhood of w the determinants of

J1 =
(
∂(fi/f0)
∂wj

)
i,j

and J2 =


f0

∂f0

∂w1
. . . ∂f0

∂wn

f1
∂f1

∂w1
. . . ∂f1

∂wn
...

...
. . .

...

fn
∂fn
∂w1

. . . ∂fn
∂wn


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are related by

det(J2) = fn+1
0 det(J1).

We would like to determine the vanishing order of the determinant of period map
pk at a point x = (x1 = 0, x2 = 0, x3, . . . , xN ). Note that(

∂(fi/f0)
∂xj

)
i,j

= f−2
0

(∣∣∣∣∣ f0 fi

∂f0

∂xj

∂fi
∂xj

∣∣∣∣∣
)
i,j

and recall that only x2, . . . , xn+1 are varying coordinates. We have to evaluate the
vanishing order of the determinant of the following matrix. We suppress the super-
and subscript k in the following.

J = I−2



∣∣∣∣ I xm2 F2
∂I
∂x2

mxm−1
2 F2 + xm2

∂F2

∂x2

∣∣∣∣ ∣∣∣∣ I xm2 F2
∂I
∂x3

xm2
∂F2

∂x3

∣∣∣∣ . . .

∣∣∣∣ I xm2 F2
∂I

∂xn+1
xm2

∂F2

∂xn+1

∣∣∣∣
...

...
. . .

...∣∣∣∣ I xm2 Fn+1
∂I
∂x2

mxm−1
2 Fn+1 + xm2

∂Fn+1

∂x2

∣∣∣∣ ∣∣∣∣ I xm2 Fn+1
∂I
∂x3

xm2
∂Fn+1

∂x3

∣∣∣∣ . . .

∣∣∣∣∣ I xm2 Fn+1
∂I

∂xn+1
xm2

∂Fn+1

∂xn+1

∣∣∣∣∣


Lemma 7.9. J vanishes of order xnm−1

2 at x.

Proof. Write det(J) = I−2x
(n−1)m+m−1
2 det(J̃) with

J̃ =



∣∣∣∣ I x2F2
∂I
∂x2

mF2 + x2
∂F2

∂x2

∣∣∣∣ ∣∣∣∣ I F2
∂I
∂x3

∂F2

∂x3

∣∣∣∣ . . .

∣∣∣∣ I F2
∂I

∂xn+1

∂F2

∂xn+1

∣∣∣∣
...

...
. . .

...∣∣∣∣ I x2Fn+1
∂I
∂x2

mFn+1 + x2
∂Fn+1

∂x2

∣∣∣∣ ∣∣∣∣ I Fn+1
∂I
∂x3

∂Fn+1

∂x3

∣∣∣∣ . . .

∣∣∣∣∣ I Fn+1
∂I

∂xn+1

∂Fn+1

∂xn+1

∣∣∣∣∣


We show that J̃ does not vanish at x = (0, x3, . . . , xn+1). Evaluation at x yields

det(J̃) = mI

∣∣∣∣∣∣∣∣
F2 I ∂F2

∂x3
− F2

∂I
∂x3

. . . I ∂F2

∂xn+1
− F2

∂I
∂xn+1

...
...

. . .
...

Fn+1 I ∂Fn+1

∂x3
− Fn+1

∂I
∂x3

. . . I ∂Fn+1

∂xn+1
− Fn+1

∂I
∂xn+1

∣∣∣∣∣∣∣∣
= mI

∣∣∣∣∣∣∣∣
F2 I ∂F2

∂x3
. . . I ∂F2

∂xn+1

...
...

. . .
...

Fn+1 I ∂Fn+1

∂x3
. . . I ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣
= mI1+(n−1)

∣∣∣∣∣∣∣∣
F2

∂F2

∂x3
. . . ∂F2

∂xn+1

...
...

. . .
...

Fn+1
∂Fn+1

∂x3
. . . ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣
By Lemma 6.4 and Lemma 7.8, we know that the determinant of

F2
∂F2

∂x3
. . . ∂F2

∂xn+1

...
...

. . .
...

Fn+1
∂Fn+1

∂x3
. . . ∂Fn+1

∂xn+1





LYAPUNOV SPECTRUM OF BALL QUOTIENTS 39

does not vanish at a point (x3, . . . , xn+1) where all coordinates are distinct and
different from 0, xN−1, xN , since this matrix describes the period map of the tuple

µ′ = (µ1(k) + µ2(k), µ2(k), . . . , µN (k)).

When N = 4, the above determinant degenerates to F2, whose non-vanishing is the
content of [DM86, Proposition 2.13]. �

Proof of Lemma 7.6, second case. If we precompose the period map starting on U
with π : Bu → B, then using the chain rule, we see that det(J(pk)) vanishes of
order κijnm− 1 at a generic point of the preimage of Lij . �

7.3. Near parabolic divisors.

Lemma 7.10. We have n∆′ = 0 for every irreducible component ∆′ of ∆.

Proof. By Lemma 6.4 the period map is a local isomorphism away from the elliptic
divisors, hence in particular near a generic point of a parabolic boundary divisor. It
thus suffices to prove the lemma for a uniformizing VHS.

To emphasize similarity with the case of the universal family of elliptic curves,
we use the Siegel domain realization

BSiegel = {(z1 : z2 : ... : zn : 1) : Im (z1)−
n∑
i=2

|zi|2 > 0} ⊂ Pn

and work near the boundary point (1 : 0 : · · · : 0) ∈ Pn. A loop around the
boundary point is represented by the parabolic matrix T = In+1 +E1,n+1. We write
q = exp(2πiz1).

We also work with the dual uniformizing VHS, where now W1,0 has rank n. Over
BSiegel we choose a basis s1, . . . , sn+1 of the constant local system and define the
Hodge filtration W1,0 as the kernel of the tautological quotient map

Cn+1⊗OBSiegel
→ OBSiegel

,

n+1∑
i=1

fisi 7→ (

n∑
i=1

zifi) + fn+1.

Explicitly, W1,0 is generated by ωi = si − zisn+1, i = 1, . . . , n. The sections si for
i = 2, . . . , n+ 1 are T -invariant and extend to s̃i over the boundary of the quotient
by T of BSiegel. Together with s̃1 = s1 − z1sn+1 they form a basis of the Deligne
extension of the local system.

A basis of TY (− log ∆) near a point in ∆ is given by 2πiq ∂∂q ,
∂
∂z2

, . . . , ∂
∂zn

. One

calculates that the matrix of derivatives of the ωi in these directions is minus the
identity. This is equivalent to τ being an isomorphism near the boundary and to
the vanishing of the cokernel, as claimed. �

7.4. Computation of c1(coker τ∨) for the case (ΣINT). The calculations pro-
ceed analogously to the (INT) case with some minor twists.

Let N ≥ 5, and let f : X → B0 be a cyclic covering of type (d, a1, . . . , aN ), and
assume now that the collection µi = ai/d satisfies (ΣINT) for some S ⊂ {1, . . . , N}.
Then B/Σ = Bn/Γ is a ball quotient. The primitive part of the VHS defined by f
then furnishes a VHS on F/Σ. Let L = Lk,Σ be one of its direct summands, which
is polarized by a hermitian form of signature (1, n).

We choose again an appropriate subgroup Γ′ ⊂ Γ, and define Bu, π, Y , ∆ and Lu
analogously to the (INT)-case. Again the results of Section 7.1 apply; Let τ∨ = τ∨k
be the dual of the Higgs field, and let pk,Σ = p1

k,Σ be the period map for L.
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Let F ⊂ B0 be the open dense submanifold, where Σ acts freely, and let M ⊂
B0 \ F be the codimension one fix locus of Σ in B0 (which is only present in a few
cases). We denote by Ml, l = 1, . . . , r the irreducible components of the closure of
M in B. Let $ : B → B/Σ be the canonical projection, and let

{Lij} and {M l}
be a system of representatives of Σ-orbits of the divisors Lij and Ml.

Lemma 7.11 ([DM93, Lemma 8.3.2]). The map $ : B → B/Σ is ramified of order
two at each smooth point of

⋃
i,j∈S Lij ∪

⋃
lMl.

Lemma 7.12. The ramification order of π : Bu → B/Σ at a point x ∈ Bu
κij , for generic x in π−1Lij with i, j 6∈ S
2κij , for generic x in π−1Lij with i, j ∈ S
2 , for generic x ∈ π−1M l

1 , if x ∈ π−1($(F ))

Moreover, we have

c1(coker τ∨) =
∑
i,j

nkij ·
∑

L⊂π−1Lij
irred.

[L]

where the nkij are given as in Lemma 7.6.

Proof. a) Let x be a point in $(F ) or on one of the divisors Lij or M l, but outside
the intersection with any of the other divisors. The map $ is locally at x a ramified
covering map. By Lemma 7.11, its multi-valued inverse is of the form

(z1, . . . , zn) 7→ (z
1/2
1 , z2, . . . , zn) or id : Cn → Cn

depending on whether x ∈
⋃
i,j∈S Lij ∪

⋃
lMl or not. If pk denotes the multi-

valued period map associated with Lk on B, then pk,Σ is locally at x given as the
composition of the multi-valued inverse of $ and pk. For k = 1, the single-valued

period map is an isomorphism of B̃1
Σ with Bn, and the map Bn → Bu is unramified,

so π : Bu → B must precisely make up for the ramification of the multi-valued map
p1,Σ. This shows a).

b) First, notice that we can copy the proof of Lemma 7.5 to see that the support
of c1(coker τ∨) is contained in the complement of π−1($(F )). Next by essentially
the same arguments as in the proof of Lemma 7.10, there are no contributions
from the boundary ∆. Furthermore, nkij is again given by the vanishing order of
det(J(pk,Σ)). By the proof of Part a) and the chain rule, this vanishing order is still
given as in Lemma 7.6. �

7.5. Collecting the contributions. In this section, we gather all the steps needed
to compute the Lyapunov exponents, and thus to prove Theorem 7.1.

Since (ΣINT) comprises (INT), we consider the setup of Section 7.4, and work
with the notations introduced there. In particular, N ≥ 5, L = Lk,Σ is a direct
summand of the primitive part of the VHS on B/Σ, induced by a cyclic covering,
and τ∨ is the dual Higgs field of the pullback VHS Lu on Bu.

Proposition 7.13. The positive Lyapunov spectrum of Lu is

λ1 = λ1 ≥ 0 = · · · = 0︸ ︷︷ ︸
n−1
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where

λ1 = 1− c1(coker τ∨). c1(ωY )n−1

c1(ωY )n
.

Proof. By Theorem 1.1 iii), 2n− 2 of the 2n+ 2 Lyapunov exponents of Lu are zero.
Moreover, since we are working with a C-variation, the first Lyapunov exponent
occurs with multiplicity 2, i.e.

λ1 = λ2.

By Proposition 3.2 and its proof, the Lyapunov spectrum of WR, the R-variation
associated with Lu ⊕ Lu, is the same as the one of Lu. Therefore, by Theorem 1.1
iv),

2λ1 =
(n+ 1) c1(W1,0). c1(ωY )n−1

c1(ωY )n

with W1,0 = E1,0 ⊕ E1,0
, where E1,0 and E1,0

are the 1, 0-parts of the Deligne
extensions of the holomorphic subbundles associated with Lu and Lu. From the

antiholomorphic isomorphism E0,1 ∼= E
1,0

and the fact that c1(E1,0) = − c1(E0,1),
we infer that

c1(W1,0) = 2 c1(E1,0).

Now, Lemma 7.3 implies the claim. �

Next, we argue that we can compute the above intersection products on B/Σ
instead of Bu. We introduce the divisor Dk ∈ CH1(Bnc/Σ)Q given by

Dk,Σ =
∑
i,j∈S

nkij
2κij

[
Lij
]

+
∑
i,j 6∈S

nkij
κij

[
Lij
]
,

and the orbifold canonical divisor

Korb
Σ = KBnc/Σ +

∑
i,j∈S

(
1− 1

2κij

)[
Lij
]

+
∑
i,j 6∈S

(
1− 1

κij

)[
Lij
]

+
∑
l

1

2

[
M l

]
(24)

with nkij from Lemma 7.6, κij = (1− µi − µj)−1 and the convention 1/κij = 0, if
µi + µj = 1. We also define the divisors

Dk =
∑
i,j

µi+µj<1

nkij
κij

[Lij ] and Korb = KB +
∑
i,j

µi+µj≤1

(1− 1

κij
)[Lij ](25)

upstairs in CH1(Bnc)Q.

Lemma 7.14. We have

λ1 = 1− c1(coker τ∨). c1(ωY )n−1

c1(ωY )n
= 1− Dk,Σ.(K

orb
Σ )n−1

(Korb
Σ )n

= 1− Dk.(K
orb)n−1

(Korb)n
.

Proof. By Lemma 7.12, the divisors Dk and Korb are adapted to satisfy

π∗Dk,Σ = c1(coker τ∨) and π∗Korb
Σ = c1(ωY ),

and by Lemma 7.11,

$∗Dk,Σ = Dk and $∗Korb
Σ = Korb.

The ring structure on CH∗(B
nc/Σ)Q does not depend on the presentation of Bnc/Σ

as a finite quotient, whence

(1/ deg(π))π∗D1.π
∗D2 = D1.D2 = (1/|Σ|)$∗D1.$

∗D2
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for any D1, D2 in CH∗(B
nc/Σ)Q. �

We can now plug in the concrete realizations of CH∗(B
nc)Q from Section 6.4 to

finish the computation in each individual case.

8. Orbifold Euler numbers and log-ball quotients

Thurston considers in his paper [Thu98] the moduli space C(µ1, . . . , µN ) of
Euclidean metrics on the sphere of total area one with conical singularities at N
points of fixed angles (2πµ1, . . . , 2πµN ) (where µi ∈ Q∩ (0, 1)). If the sum of angles∑
µi = 2, Thurston provides this space with a hyperbolic metric so that, up to

taking the quotient by the finite group permuting the points of equal angle, the
metric completion C(µ1, . . . , µN ) of this moduli space is the space of (µi)i-stable
points Bµ. This metric completion is a hyperbolic cone manifold, and an orbifold
ball quotient precisely when (ΣINT) is satisfied.

For each of these hyperbolic cone manifolds, one can study its volume. In
particular, for µ = (µi(1))i parametrizing an orbifold ball quotient and µ(k) a
Galois conjugate tuple thereof with

∑
i µi(k) = 2, the ratio of the volumes of

C(µ1(k), . . . , µN (k)) and C(µ1(1), . . . , µN (1)) is an interesting invariant, which
remains unchanged under passage to a covering defined by a finite index subgroup
of the associated lattice.

Here we study the corresponding algebro-geometric version of this invariant, the
orbifold Euler number. By the Gauß-Bonnet theorem it is proportional to the
volume of the hyperbolic cone manifold.

Since all but one of the known non-arithmetic lattices are in dimension at most
two and for simplicity we restrict to the surface case. The orbifold Euler number, as
introduced by Langer [Lan03], is defined for any pair (X,D) of a normal projective
surface and a Q-Divisor D =

∑
aiDi, where the Di are prime divisors and 0 ≤ ai ≤ 1,

and is given by

eorb(X,D) = etop(X)−
∑

ai etop(Di \ Sing(X,D))−
∑

x∈Sing(X,D)

1− eorb(x,X,D).

(26)

It extends the well-studied case when ai = (1− 1/m) with m ∈ N, i. e. when (X,D)
is an actual orbifold. Here, Sing(X,D) is the locus where either X or suppD is
singular, and eorb(x,X,D) is the local orbifold Euler number that we will give below
in the cases of interest.

Fix a quintuple (µi)
5
i=1. First, we only suppose that

∑
i µi = 2 and consider the

space Bµ,nc of µ-semistable points, blown up at the cusps, together with the divisor

Rµ =
∑

i<j:µi+µj≤1

(µi + µj)[Lij ].(27)

Further let KBµ,nc denote the canonical divisor class of Bµ,nc.

Theorem 8.1. For any (µi)
5
i=1 ∈ (Q∩ (0, 1))5 with

∑
i µi = 2, the pair (Bµ,nc, Rµ)

is a is a log-ball quotient in the sense that with the definition corb
1 (Bµ,nc, Rµ) =

KBµ,nc+Rµ equality is attained in the generalized Bogomolov-Miyaoka-Yau inequality,
i.e.

3 eorb(Bµ,nc, Rµ) =
(

corb
1 (Bµ,nc, Rµ)

)2
.(28)
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It is classically known that 2-dimensional ball quotients are the surfaces of general
type realizing equality in the Bogomolov-Miyaoka-Yau inequality 3 c2 ≥ c2

1. This
inequality can be generalized to orbifolds and further to log-canonical pairs (X,D)
(see [Lan03] and references therein). The BMY-equality of orbifold Chern classes
has been used to find new examples of ball quotients (for an account see [Yos87,
§10]). Our theorem yields new examples of log-varieties satisfying a BMY-equality
without being a ball quotient.

In the case that µ satisfies (INT), the orbifold canonical divisor corb
1 (B`,R`)

coincides with Korb in (25) and we recover the orbifold version of Chern class
proportionality on a ball quotient.

From this theorem we will deduce that the relative orbifold Euler characteristics
are ratios of intersection numbers on the ball quotient and thus commensurability
invariants by Corollary 4.5. For the precise statement, let us fix a quintuple
(µi)

5
i=1 satisfying (ΣINT), and let µ(k) = (µi(k))i be a Galois conjugate quintuple

parametrizing a local system of signature (1, 2). For ` ∈ {1, k}, we consider the
space B` = Bnc,µ(`)/Σ and define the divisor R` to be the image of Rµ(`) in the
Chow ring of B`.

Corollary 8.2. Suppose (µi)
5
i=1 satisfies (ΣINT), and let µ(k) = (µi(k))i be a

Galois conjugate quintuple parametrizing a local system of signature (1, 2). Then

eorb(Bk,Rk)

eorb(B1,R1)
=

(Korb −Dk)2

(Korb)2
=

c1(Hom(E1,0
k , E0,1

k ))2

c1(ωY )2
=

9 c1(E1,0
k )2

c1(ωY )2

where Y is as in Section 7.4 and E1,0
k (resp. E0,1

k ) is the holomorphic subbundle
(quotient bundle) of the pullback VHS of Lk.

Using the structure of the Chow ring explicated in Section 6.4.1, we can evaluate
the right hand side of the (28). We can also evaluate the left hand side explicitly.

Proposition 8.3. The orbifold Euler number of (Bµ,nc, Rµ) is

eorb(Bµ,nc, Rµ) = 7 +
∑

i<j:µi+µj≤1

(µi + µj) +
∑

i<j:µi+µj>1

(µi + µj − 1)2 − 2

+
∑

i<j,l<m:
i<l,j 6=m
µi+µj≤1
µl+µm≤1

(1− µi − µj)(1− µl − µm)− 1.(29)

We will combine these two results for the proof of Theorem 8.1. It would however
be interesting to find a more conceptual explanation for the proportionality relation,

using the fact that on the open dense set B̃0 in the Fox completion B̃µ, the period
map is étale and induces a sheaf isomorphism of Ω1

B0
with Hom(L1,0,L0,1), the

sheaf induced by pulling back the cotangent sheaf of Bn. The major difficulty seems
to be the lack of a complex structure on the Fox completion for arbitrary µ with∑
i µi = 2.

8.1. Orbifold Euler numbers. For our computations it will be sufficient to know
eorb(x,X,D) when X is smooth and D has normal crossings or ordinary triple
points, i.e. locally at x ∈ Sing(D) the divisor D is analytically isomorphic to∑n
i=1 aiLi where Li are n ≤ 3 distinct lines in C2 passing through the origin. Then
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eorb(x,X,D) = eorb(0,C2,
∑
aiLi). In this situation, we have in particular [Lan03,

Theorem 8.3]

eorb(0,C2,
∑

aiL) =


(1− a1) · (1− a2), if n = 2
1
4 · (a1 + a2 + a3 − 2)2, if n = 3, a1 ≤ a2 ≤ a3,

a3 < a1 + a2 and

a1 + a2 + a3 ≤ 2.

Another property of eorb that we will use is the fact that it behaves multiplicatively
under pullback, i.e if f : Y → X is a finite, proper morphism of normal, proper
surfaces and f∗(KX +D) = KY +D′ for a Q-divisor D′, then

eorb(Y,D′) = deg(f) · eorb(X,D).

We can now prove the explicit formula for the orbifold Euler number of the pair
(Bµ,nc, Rµ).

Proof of Proposition 8.3. The topological Euler characteristic of Bµ,nc is 7 minus
the number of contracted Lij ’s. Lij is contracted whenever µi + µj > 1, whence
the third summand has a (−2) instead of the (−1) appearing in (26). The second
summand is the codimension 1 contribution. The coefficient of Lij , whenever present
in Rµ, is aij = µi + µj , and Lij \ Sing(Rµ) is a thrice-punctured P1. The remaining
summands are the codimension 2 contributions. For each contracted Lij we have
an ordinary triple point with contribution

1
4 (alm + alq + amq − 2)2 = (µl + µm + µq − 1)2 = (µi + µj − 1)2,

where {l,m, q} = {1, . . . , 5} \ {i, j}. Note that aσ(l)σ(m) ≤ aσ(l)σ(q) + aσ(m)σ(q) for
every permutation σ of {l,m, q} and alm + alq + amq < 2. The last summand is the
contribution from the ordinary double points. �

8.2. Proof of Theorem 8.1 and Corollary 8.2. The space Bµ,nc results from
B10 by blowing down all the divisors Lij with µi + µj > 1. Before engaging in the
proof of Theorem 8.1, we compute the pullback of the “boundary“ divisor Rµ under
this blowup map.

Lemma 8.4. Let µ ∈ (Q ∩ (0, 1))5,
∑
i µi = 2 and let b : B10 → Bµ,nc denote the

map blowing down all divisors Lij with µi + µj > 1. Then

(30) b∗(KBµ,nc +Rµ) = KB10
+

∑
i<j:

µi+µj≤1

(µi+µj)[Lij ]+
∑
i<j:

µi+µj>1

(3−2(µi+µj))[Lij ].

Proof. Since b is a composition of several blowdowns that commute with each other,
we can treat each blowdown individually. So assume first that there is only one
pair {a, b} ⊂ {1, . . . , 5} such that µa + µb > 1. The image of the exceptional
divisor Lab under b is the intersection of the lines Lµcd, L

µ
ce and Lµde in Bµ, where

{a, b, c, d, e} = {1, . . . , 5}. The total transform of a boundary divisor [Lµij ] is thus

b∗[Lµij ] =

{
[Lij ] + [Lab], if {i, j} ⊂ {c, d, e}
[Lij ], otherwise.
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Therefore, we obtain altogether

b∗(KBµ,nc +Rµ) = KB10
+

∑
i<j:

µi+µj≤1

(µi + µj)[Lij ]

+
∑
a<b:

µa+µb>1
{a,b,c,d,e}={1,...,5}

(−1 + 2(µc + µd + µe))[Lab].

Using
∑
i µi = 2, we obtain the claim. �

Proof of Theorem 8.1. We first show the identity (KBµ +Rµ)2 = eorb(Bµ, Rµ) for
a configuration of type B10. We have K2

B10
= 5, and [Lij ].KB10

= −1. Moreover

[Lij ].[Llm] =


0, if |{i, j} ∩ {l,m}| = 1

1, if {i, j} ∩ {l,m} = ∅
−1, if {i, j} = {l,m}.

Hence,(∑
i<j

(µi + µj)[Lij ]
)2

= −
∑
i<j

(µi + µj)
2 + 2 ·

∑
i<j,l<m,i<l

(µi + µj)(µl + µm)

= −4
∑
i

µ2
i − 2

∑
i<j

µiµj + 12
∑
i<j

µiµj = 18
∑
i<j

µiµj − 16,

where we use 4 = (
∑
i µi)

2 =
∑
i µ

2
i + 2

∑
i<j µiµj . Altogether we obtain

(KB10
+
∑
i<j

(µi + µj)[Lij ])
2 = K2

B10
+ 2KB10

.(
∑
i<j

(µi + µj)[Lij ]) + (
∑
i<j

(µi + µj)[Lij ])
2

= 5 + (−2) · 4
∑
i

µi + 18
∑
i<j

µiµj − 16

= 18
∑
i<j

µiµj − 27.

On the other hand,

eorb(B10, R
µ) = 7 + 4 ·

∑
i

µi − 15 +
∑

i<j,l<m,i<l

(1− µi − µj)(1− µl − µm)

= 15− 4!
2

∑
i

µi +
∑

i<j,l<m,i<l

(µi + µj)(µl + µm)

= −9 + 6
∑
i<j

µiµj

Now let µ be arbitrary. By Lemma 8.4, the blowdown map b : B10 → Bµ satisfies

b∗(KBµ +Rµ) =

A︷ ︸︸ ︷
KB10 +

∑
i<j

(µi + µj)[Lij ] +

B︷ ︸︸ ︷∑
i<j:

µi+µj>1

3(1− µi − µj)[Lij ] .

We proceed by computing the individual summands of

(KBµ +Rµ)2 = (b∗(KBµ +Rµ))2 = A2 + 2AB +B2.
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For i < j with µi + µj > 1, let {l,m, q} be the complement in {1, . . . , 5}. Then

(KB10
+
∑
i′<j′

(µi′ + µj′)[Li′j′ ]).[Lij ]) = −1 + 2(µl + µm + µq)− (µi + µj)

= 3(1− µi − µj)

As different Lij ’s with µi + µj > 1 do not intersect,( ∑
i<j:

µi+µj>1

3(1− µi − µj)[Lij ]
)2

= −9
∑
i<j:

µi+µj>1

(1− µi − µj)2

Putting everything together, using that the identity A2 = 18
∑
i<j µiµj − 27 also

holds for arbitrary µ, we obtain

(KBµ +Rµ)2 = (KB10
+
∑
i<j

(µi + µj)Lij)
2 + 9

∑
i<j:

µi+µj>1

(1− µi − µj)2

= 18
∑
i<j

µiµj − 27 + 9
∑
i<j:

µi+µj>1

(1− µi − µj)2.

Now we investigate the amount by which the Euler characteristic changes for each
i < j with µi + µj > 1. First observe that we still can evaluate the right hand side
of (29) for the boundary divisor

∑
i<j(µi + µj)[Lij ] on B10 and that eorb(Bµ, Rµ)

is off this quantity by some “error term” M

eorb(Bµ, Rµ) = 6
∑
i<j

µiµj − 9 +M

with M being the sum over all i < j with µi + µj > 1 of the expression

−(µi + µj) + (µi + µj − 1)2 − 2− (1− µi − µj)(3− 2(µl + µm + µq)) + 3,

where {l,m, q} is again a complement of {i, j}. Evaluating this yields

M = 3
∑
i<j:

µi+µj>1

(1− µi − µj)2,

which altogether implies 3 eorb(Bµ, Rµ) = (KBµ +Rµ)2. �

The starting point for the proof of Corollary 8.2 is that for µ = µ(1) satisfying
(ΣINT), the space Bµ,nc is larger than any of its Galois conjugates Bµ(k),nc (with∑

i µi(k) = 2) in the sense that Bµ,nc is an intermediate space in the chain of

blowdowns B10 → · · · → Bµ(k),nc. More precisely,

Lemma 8.5. Suppose µ ∈ (Q ∩ (0, 1))5 satisfies (ΣINT), and let µ(k) be a Galois
conjugate of signature (1, 2).

a) For any pair {i, j} ⊂ {1, . . . , 5}, µi + µj > 1 implies µi(k) + µj(k) > 1.

In particular, there is a blowdown map b : Bµ,nc → Bµ(k),nc contracting some
of the boundary divisors Lij with self-intersection (−1).

b) b∗(KBµ(k),nc +Rµ(k)) = Korb −Dk.
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Proof. a) One checks all the finitely many cases. b) By the proof of Lemma 8.4, we
find that the coefficient of b∗(KBµ(k),nc +Rµ(k)) in front of [Lij ] is

3− 2(µi(k) + µj(k)) = 1− nkij
κij
.

�

This property is not true for arbitrary µ with
∑
i µi = 2 and we suspect it to

reflect a metric contraction property of the non-uniformizing period maps relative
to the uniformizing one, analogously to the case of Teichmüller curves.

Proof of Corollary 8.2. First, note that

eorb(Bk,Rk)

eorb(B1,R1)
=

eorb(Bµ(k),nc,Rµ(k))

eorb(Bµ,nc, Rµ)

using the multiplicative behavior of eorb under pullback. The first equality reduces
thus to combining Theorem 8.1 with Lemma 8.5 b).

For the second and third equality, let again π : Y → B1 denote the extension of
the canonical projection Bu = B2/Γ′ → B1/Σ as in Section 7.4. Then by (23) and
using c1(E1,0) = − c1(E0,1), we obtain

π∗(Korb −Dk) = c1(ωY )− c1(coker τ̃)

= − c1(Hom(E1,0, E0,1))

= − c1((E1,0)∗⊗E0,1) = 3 c1(E1,0)

�
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